Prismatic cohomology and de Rham–Witt forms
- Authors: Molokov S.V.1
-
Affiliations:
- Faculty of Mathematics, National Research University Higher School of Economics, Moscow, Russia
- Issue: Vol 216, No 10 (2025)
- Pages: 77-100
- Section: Articles
- URL: https://medbiosci.ru/0368-8666/article/view/331247
- DOI: https://doi.org/10.4213/sm10214
- ID: 331247
Cite item
Abstract
Keywords
About the authors
Semen Vyacheslavovich Molokov
Faculty of Mathematics, National Research University Higher School of Economics, Moscow, Russia
Email: sam-molokov1@yandex.ru
without scientific degree, no status
References
- Y. Andre, “La conjecture du facteur direct”, Publ. Math. Inst. Hautes Etudes Sci., 127 (2018), 71–93
- J. Anschütz, A.-C. Le Bras, Prismatic Dieudonne theory
- J. Anschütz, A.-C. Le Bras, “The $p$-completed cyclotomic trace in degree 2”, Ann. K-Theory, 5:3 (2020), 539–580
- B. Bhatt, Geometric aspects of $p$-adic Hodge theory: prismatic cohomology, Eilenberg Lectures at Columbia Univ.
- B. Bhatt, J. Lurie, Absolute prismatic cohomology
- B. Bhatt, M. Morrow, P. Scholze, “Integral $p$-adic Hodge theory”, Publ. Math. Inst. Hautes Etudes Sci., 128 (2018), 219–397
- B. Bhatt, P. Scholze, “Prisms and prismatic cohomology”, Ann. of Math. (2), 196:3 (2022), 1135–1275
- J. Borger, Witt vectors, lambda-rings, and arithmetic jet spaces, Course at the Univ. of Copenhagen, 2016
- L. Illusie, “Complexe de de Rham–Witt et cohomologie cristalline”, Ann. Sci. Ecole Norm. Sup. (4), 12:4 (1979), 501–661
- L. Illusie, De Rham–Witt complexes and $p$-adic Hodge theory, Pre-notes for Sapporo seminar, March 2011
- L. Illusie, M. Raynaud, “Les suites spectrales associees au complexe de de Rham–Witt”, Publ. Math. Inst. Hautes Etudes Sci., 57 (1983), 73–212
- A. Joyal, “$delta$-anneaux et vecteurs de Witt”, C. R. Math. Rep. Acad. Sci. Canada, 7:3 (1985), 177–182
- A. Langer, T. Zink, “De Rham–Witt cohomology for a proper and smooth morphism”, J. Inst. Math. Jussieu, 3:2 (2004), 231–314
- The Stacks project
- Yu. J. F. Sulyma, Prisms and Tambara functors I: Twisted powers, transversality, and the perfect sandwich
- Yichao Tian, “Finiteness and duality for the cohomology of prismatic crystals”, J. Reine Angew. Math., 2023:800 (2023), 217–257
Supplementary files
