Максимальные операторы Кальдерона–Зигмунда и множители Вейля
- Авторы: Карагулян Г.А.1,2, Лэйси М.Т.3, Навоян Х.В.1
-
Учреждения:
- Institute of Mathematics of National Academy of Sciences of RA, Yerevan, Republic of Armenia
- Faculty of Mathematics and Mechanics, Yerevan State University, Yerevan, Republic of Armenia
- School of Mathematics, Georgia Institute of Technology, Atlanta, GA, USA
- Выпуск: Том 216, № 10 (2025)
- Страницы: 42-61
- Раздел: Статьи
- URL: https://medbiosci.ru/0368-8666/article/view/331245
- DOI: https://doi.org/10.4213/sm10277
- ID: 331245
Цитировать
Аннотация
, и
$$
\|T^*\|_{L^p\to L^p}\lesssim c(N)
\max_{1\le k\le N}\|T_k\|_{L^p\to L^p}.
$$
Мы рассматриваем эту задачу для операторов Кальдерона–Зигмунда. Первые два автора доказали, что
Библиография: 46 названий.
Об авторах
Григорий Арташесович Карагулян
Institute of Mathematics of National Academy of Sciences of RA, Yerevan, Republic of Armenia; Faculty of Mathematics and Mechanics, Yerevan State University, Yerevan, Republic of Armenia
Email: g.karagulyan@ysu.am
доктор физико-математических наук, профессор
Майкл Торо Лэйси
School of Mathematics, Georgia Institute of Technology, Atlanta, GA, USA
Email: lacey@math.gatech.edu
доктор физико-математических наук, профессор
Хажакануш В.. Навоян
Institute of Mathematics of National Academy of Sciences of RA, Yerevan, Republic of Armenia
Email: khvnavoyan@gmail.com
Список литературы
- A. Alfonseca, F. Soria, A. Vargas, “An almost-orthogonality principle in $L^2$ for directional maximal functions”, Harmonic analysis at Mount Holyoke (South Hadley, MA, 2001), Contemp. Math., 320, Amer. Math. Soc., Providence, RI, 2003, 1–7
- M. Bateman, “Kakeya sets and directional maximal operators in the plane”, Duke Math. J., 147:1 (2009), 55–77
- S. Y. A. Chang, J. M. Wilson, T. H. Wolff, “Some weighted norm inequalities concerning the Schrödinger operators”, Comment. Math. Helv., 60:2 (1985), 217–246
- C. Demeter, F. Di Plinio, “Logarithmic $L^p$ bounds for maximal directional singular integrals in the plane”, J. Geom. Anal., 24:1 (2014), 375–416
- L. Grafakos, P. Honzik, A. Seeger, “On maximal functions for Mikhlin–Hörmander multipliers”, Adv. Math., 204:2 (2006), 363–378
- A. Kamont, G. A. Karagulyan, “On wavelet polynomials and Weyl multipliers”, J. Anal. Math., 150:2 (2023), 529–545
- G. A. Karagulyan, “On unboundedness of maximal operators for directional Hilbert transforms”, Proc. Amer. Math. Soc., 135:10 (2007), 3133–3141
- G. A. Karagulyan, “On systems of non-overlapping Haar polynomials”, Ark. Mat., 58:1 (2020), 121–131
- G. A. Karagulyan, M. T. Lacey, “On logarithmic bounds of maximal sparse operators”, Math. Z., 294:3-4 (2020), 1271–1281
- N. H. Katz, “Maximal operators over arbitrary sets of directions”, Duke Math. J., 97:1 (1999), 67–79
- A. Kolmogoroff, D. Menchoff, “Sur la convergence des series de fonctions orthogonales”, Math. Z., 26:1 (1927), 432–441
- D. Menchoff, “Sur les series de fonctions orthogonales. I”, Fund. Math., 4 (1923), 82–105
- F. Moricz, “On the convergence of Fourier series in every arrangement of the terms”, Acta Sci. Math. (Szeged), 31 (1970), 33–41
- S. Nakata, “On the divergence of rearranged Fourier series of square integrable functions”, Acta Sci. Math. (Szeged), 32 (1971), 59–70
- S. Nakata, “On the divergence of rearranged trigonometric series”, Tohoku Math. J. (2), 27:2 (1975), 241–246
- S. Nakata, “On the unconditional convergence of Walsh series”, Anal. Math., 5:3 (1979), 201–205
- S. Nakata, “On the divergence of rearranged Walsh series”, Tohoku Math. J. (2), 24:2 (1972), 275–280
- W. Orlicz, “Zur Theorie der Orthogonalreihen”, Bull. Intern. Acad. Sci. Polon. Cracovie, 1927, 81–115
- S. N. Poleščuk, “On the unconditional convergence of orthogonal series”, Anal. Math., 7:4 (1981), 265–275
- H. Rademacher, “Einige Sätze über Reihen von allgemeinen Orthogonalfunktionen”, Math. Ann., 87:1-2 (1922), 112–138
- A. Nagel, E. M. Stein, S. Wainger, “Differentiation in lacunary directions”, Proc. Nat. Acad. Sci. U.S.A., 75:3 (1978), 1060–1062
- E. M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Math. Ser., 43, Monogr. Harmon. Anal., III, Princeton Univ. Press, Princeton, NJ, 1993, xiv+695 pp.
- K. Tandori, “Über die orthogonalen Funktionen. X. (Unbedingte Konvergenz.)”, Acta Sci. Math. (Szeged), 23 (1962), 185–221
- K. Tandori, “Beispiel der Fourierreihe einer quadratisch-integrierbaren Funktion, die in gewisser Anordnung ihrer Glieder überall divergiert”, Acta Math. Acad. Sci. Hungar., 15 (1964), 165–173
- K. Tandori, “Über die Divergenz der Walshschen Reihen”, Acta Sci. Math. (Szeged), 27 (1966), 261–263
- Z. Zahorski, “Une serie de Fourier permutee d'une fonction de classe $L^{2}$ divergente presque partout”, C. R. Acad. Sci. Paris, 251 (1960), 501–503
Дополнительные файлы
