Эпидемиология и механизмы устойчивости грибов рода Aspergillus к противогрибковым препаратам: литературный обзор
- Авторы: Автономова А.В.1, Кисиль О.В.1
-
Учреждения:
- Научно-исследовательский институт по изысканию новых антибиотиков имени Г.Ф. Гаузе
- Выпуск: Том 31, № 6 (2025)
- Страницы: 568-578
- Раздел: Научные обзоры
- URL: https://medbiosci.ru/0869-2106/article/view/375538
- DOI: https://doi.org/10.17816/medjrf685079
- EDN: https://elibrary.ru/OGHCOF
- ID: 375538
Цитировать
Аннотация
Инвазивные микозы становятся всё более серьёзной проблемой глобального здравоохранения, особенно для иммунокомпрометированных пациентов. Одними из основных возбудителей этих инфекций являются грибы рода Aspergillus, особенную опасность представляет Aspergillus fumigatus. Несмотря на успехи в лечении антимикотиками, в первую очередь азольными препаратами, распространение устойчивых к ним штаммов Aspergillus spp. становится новой угрозой для медицины.
В настоящем обзоре обобщена информация о распространённости лекарственно-устойчивых Aspergillus spp. и о выявленных у них механизмах устойчивости к противогрибковым препаратам. Основной акцент сделан на литературу последнего десятилетия, однако учтены и важные фундаментальные работы предыдущих периодов. Поиск проводили в электронных базах данных eLIBRARY.RU, PubMed, Google Scholar, Wally.
Анализ показал значительный рост случаев инвазивных аспергиллёзов, вызванных резистентными штаммами рода Aspergillus. Основные механизмы устойчивости включают мутации в гене cyp51 и гиперактивацию транспортных белков, выводящих лекарства из клетки. Устойчивые формы патогенов обнаруживаются в странах Европы, Азии, Африки и Америки.
Полученные результаты могут быть использованы для составления рекомендаций по повышению эффективности управления эпидемиологическим надзором за устойчивостью грибов рода Aspergillus к противогрибковым препаратам. Направления приоритетных исследований должны включать разработку антимикотиков, создание новых диагностических тестов для быстрого выявления резистентных штаммов и оптимизацию схем терапии. Необходимо повысить осведомлённость медицинских работников о рисках, связанных с использованием азольных препаратов, и усилить меры контроля за появлением устойчивых видов грибов.
Ключевые слова
Об авторах
Анастасия Витальевна Автономова
Научно-исследовательский институт по изысканию новых антибиотиков имени Г.Ф. Гаузе
Автор, ответственный за переписку.
Email: nomova@yandex.ru
ORCID iD: 0000-0001-5098-5379
SPIN-код: 4409-8108
канд. биол. наук
Россия, МоскваОльга Валерьевна Кисиль
Научно-исследовательский институт по изысканию новых антибиотиков имени Г.Ф. Гаузе
Email: olvv@mail.ru
ORCID iD: 0000-0003-4799-1318
SPIN-код: 1153-8414
кандидат химических наук
Россия, МоскваСписок литературы
- Denning DW. Global incidence and mortality of severe fungal disease. Lancet Infect Dis. 2024;24(7):e428–e438. doi: 10.1016/S1473-3099(23)00692-8 EDN: SIXIIN
- Khostelidi SN, Kozlova OP, Shadrivova OV, et al. Invasive mycoses in intensive care units (analysis of registry data and literature review). Problems in Medical Mycology. 2024;26(1):3–21. doi: 10.24412/1999-6780-2024-1-3-21 EDN: DRLDJW
- Camps SM, van der Linden JW, Li Y, et al. Rapid induction of multiple resistance mechanisms in Aspergillus fumigatus during azole therapy: a case study and review of the literature. Antimicrob Agents Chemother. 2012;56(1):10–16. doi: 10.1128/AAC.05088-11
- Sachs MK, Paluzzi RG, Moore JH Jr, et al. Amphotericin-resistant aspergillus osteomyelitis controlled by itraconazole. Lancet. 1990;335(8703):1475. doi: 10.1016/0140-6736(90)91513-a
- Dermoumi H. In vitro susceptibility of fungal isolates of clinically important specimens to itraconazole, fluconazole and amphotericin B. Chemotherapy. 1994;40(2):92–98. doi: 10.1159/000239178
- Denning DW, Venkateswarlu K, Oakley KL, et al. Itraconazole resistance in Aspergillus fumigatus. Antimicrob Agents Chemother. 1997;41(6):1364–1368. doi: 10.1128/AAC.41.6.1364
- Gardiner RE, Souteropoulos P, Park S, Perlin DS. Characterization of Aspergillus fumigatus mutants with reduced susceptibility to caspofungin. Med Mycol. 2005;43 Suppl. 1:S299–S305. doi: 10.1080/13693780400029023
- Beernaert LA, Pasmans F, Van Waeyenberghe L, et al. Avian Aspergillus fumigatus strains resistant to both itraconazole and voriconazole. Antimicrob Agents Chemother. 2009;53(5):2199–2201. doi: 10.1128/AAC.01492-08
- Jiménez-Ortigosa C, Moore C, Denning DW, Perlin DS. Emergence of Echinocandin resistance due to a point mutation in the fks1 gene of Aspergillus fumigatus in a patient with chronic pulmonary aspergillosis. Antimicrob Agents Chemother. 2017;61(12):e01277–217. doi: 10.1128/AAC.01277-17 EDN: YHZUAV
- Snelders E, Camps SM, Karawajczyk A, et al. Genotype-phenotype complexity of the TR46/Y121F/T289A cyp51A azole resistance mechanism in Aspergillus fumigatus. Fungal Genet Biol. 2015;82:129–135. doi: 10.1016/j.fgb.2015.06.001
- Houšť J, Spížek J, Havlíček V. Antifungal drugs. Metabolites. 2020;10(3):106. doi: 10.3390/metabo10030106 EDN: WARRSL
- Cowen LE. Predicting the emergence of resistance to antifungal drugs. FEMS Microbiol Lett. 2001;204(1):1–7. doi: 10.1111/j.1574-6968.2001.tb10853.x EDN: ASAAVP
- Morogovsky A, Handelman M, Abou Kandil A, et al. Horizontal gene transfer of triazole resistance in Aspergillus fumigatus. Microbiol Spectr. 2022;10(3):e0111222. doi: 10.1128/spectrum.01112-22 EDN: EZTVUV
- Lelièvre L, Groh M, Angebault C, et al. Azole resistant Aspergillus fumigatus: an emerging problem. Med Mal Infect. 2013;43(4):139–145. doi: 10.1016/j.medmal.2013.02.010
- De Francesco MA. Drug-Resistant Aspergillus spp.: A literature review of its resistance mechanisms and its prevalence in Europe. Pathogens. 2023;12(11):1305. doi: 10.3390/pathogens12111305 EDN: SZHEKG
- Babič MN, Gunde-Cimerman N, Vargha M, et al. Fungal contaminants in drinking water regulation? A tale of ecology, exposure, purification and clinical relevance. International Journal of Environmental Research and Public Health. 2017;14(6):636. doi: 10.3390/ijerph14060636 EDN: YHWBIA
- Panackal AA, Li H, Kontoyiannis DP, et al. Geoclimatic influences on invasive aspergillosis after hematopoietic stem cell transplantation. Clin Infect Dis. 2010;50(12):1588–1597. doi: 10.1086/652761
- Chadeganipour M, Nilipour S, Ahmadi G. Study of onychomycosis in Isfahan, Iran. Mycoses. 2010;53(2):153–157. doi: 10.1111/j.1439-0507.2008.01679.x
- Järv H, Naaber P, Kaur S, et al. Toenail onychomycosis in Estonia. Mycoses. 2004;47(1-2):57–61. doi: 10.1046/j.1439-0507.2003.00947.x EDN: FMCMEH
- Bagirova NS. Invasive fungal infections: revision of definitions, new in diagnostics based on data EORTC/MSGERC. Malignant Tumors. 2020;10(3s1):39–48. (In Russ.) doi: 10.18027/2224-5057-2019-10-3s1-39-48 EDN: TYEYWI
- Martynova AV, Pavlova OS, Yusupova EP. Epidemiological analysis of systemic mycoses in COVID-19. Medical Council. 2023;(13):326–331. doi: 10.21518/ms2023-178 EDN: HFHJFT
- Verweij PE, Chowdhary A, Melchers WJ, Meis JF. Azole resistance in Aspergillus fumigatus: can we retain the clinical use of mold-active antifungal azoles? Clin Infect Dis. 2016;62(3):362–368. doi: 10.1093/cid/civ885 EDN: WPEBGB
- Tissot F, Agrawal S, Pagano L, et al. ECIL-6 guidelines for the treatment of invasive candidiasis, aspergillosis and mucormycosis in leukemia and hematopoietic stem cell transplant patients. Haematologica. 2017;102(3):433–444. doi: 10.3324/haematol.2016.152900
- Verweij PE, Ananda-Rajah M, Andes D, et al. International expert opinion on the management of infection caused by azole-resistant Aspergillus fumigatus. Drug Resist Updat. 2015;21-22:30–40. doi: 10.1016/j.drup.2015.08.001 EDN: VEWYWV
- Patterson TF, Thompson GR 3rd, Denning DW, et al. Practice guidelines for the diagnosis and management of aspergillosis: 2016 Update by the Infectious Diseases Society of America. Clin Infect Dis. 2016;63(4):e1–e60. doi: 10.1093/cid/ciw326
- Pérez-Cantero A, López-Fernández L, Guarro J, Capilla J. Azole resistance mechanisms in Aspergillus: update and recent advances. Int J Antimicrob Agents. 2020;55(1):105807. doi: 10.1016/j.ijantimicag.2019.09.011 EDN: HABXVD
- Hargrove TY, Wawrzak Z, Lamb DC, et al. Structure-functional characterization of cytochrome P450 sterol 14α-demethylase (CYP51B) from Aspergillus fumigatus and molecular basis for the development of antifungal drugs. J Biol Chem. 2015;290(39):23916–23934. doi: 10.1074/jbc.M115.677310 EDN: XYREAV
- Lucio J, Gonzalez-Jimenez I, Rivero-Menendez O, et al. Point mutations in the 14-α sterol demethylase Cyp51A or Cyp51C could contribute to azole resistance in Aspergillus flavus. Genes (Basel). 2020;11(10):1217. doi: 10.3390/genes11101217 EDN: TXHHNR
- Hawkins NJ, Cools HJ, Sierotzki H, et al. Paralog re-emergence: a novel, historically contingent mechanism in the evolution of antimicrobial resistance. Mol Biol Evol. 2014;31(7):1793–1802. doi: 10.1093/molbev/msu134
- Sergeev AYu, Sergeev YuV, Klyasova GA, et al. Fungal infections. Moscow: Izdatel'stvo BINOM. Laboratoriya znanij; 2008. (In Russ.) EDN: QLQZLZ
- Howard SJ, Cerar D, Anderson MJ, et al. Frequency and evolution of azole resistance in Aspergillus fumigatus associated with treatment failure. Emerg Infect Dis. 2009;15(7):1068–1076. doi: 10.3201/eid1507.090043
- van der Linden JW, Camps SM, Kampinga GA, et al. Aspergillosis due to voriconazole highly resistant Aspergillus fumigatus and recovery of genetically related resistant isolates from domiciles. Clin Infect Dis. 2013;57(4):513–520. doi: 10.1093/cid/cit320
- Mellado E, Garcia-Effron G, Alcázar-Fuoli L, et al. A new Aspergillus fumigatus resistance mechanism conferring in vitro cross-resistance to azole antifungals involves a combination of cyp51A alterations. Antimicrob Agents Chemother. 2007;51(6):1897–1904. doi: 10.1128/AAC.01092-06
- Bueid A, Howard SJ, Moore CB, et al. Azole antifungal resistance in Aspergillus fumigatus: 2008 and 2009. J Antimicrob Chemother. 2010;65(10):2116–2118. doi: 10.1093/jac/dkq279
- Perlin MH, Andrews J, Toh SS. Essential letters in the fungal alphabet: ABC and MFS transporters and their roles in survival and pathogenicity. Adv Genet. 2014;85:201–253. doi: 10.1016/B978-0-12-800271-1.00004-4
- Hokken MWJ, Zoll J, Coolen JPM, et al. Phenotypic plasticity and the evolution of azole resistance in Aspergillus fumigatus; an expression profile of clinical isolates upon exposure to itraconazole. BMC Genomics. 2019;20(1):28. doi: 10.1186/s12864-018-5255-z EDN: XZCGTW
- Gsaller F, Hortschansky P, Furukawa T, et al. Sterol biosynthesis and azole tolerance is governed by the opposing actions of SrbA and the CCAAT binding complex. PLoS Pathog. 2016;12(12):e1006106. doi: 10.1371/journal.ppat.1006106 Corrected and republished from: PLoS Pathog. 2016;12(7):e1005775. doi: 10.1371/journal.ppat.1005775
- Schrettl M, Beckmann N, Varga J, et al. HapX-mediated adaption to iron starvation is crucial for virulence of Aspergillus fumigatus. PLoS Pathog. 2010;6(9):e1001124. doi: 10.1371/journal.ppat.1001124 EDN: MOWFWA
- Chung D, Barker BM, Carey CC, et al. ChIP-seq and in vivo transcriptome analyses of the Aspergillus fumigatus SREBP SrbA reveals a new regulator of the fungal hypoxia response and virulence. PLoS Pathog. 2014;10(11):e1004487. doi: 10.1371/journal.ppat.1004487
- Hagiwara D, Miura D, Shimizu K, et al. A novel Zn2-Cys6 transcription factor AtrR plays a key role in an azole resistance mechanism of Aspergillus fumigatus by co-regulating cyp51A and cdr1B expressions. PLoS Pathog. 2017;13(1):e1006096. doi: 10.1371/journal.ppat.1006096 EDN: YWSUXR
- Du W, Zhai P, Wang T, et al. The C2H2 transcription factor SltA contributes to azole resistance by coregulating the expression of the drug target Erg11A and the drug efflux pump Mdr1 in Aspergillus fumigatus. Antimicrob Agents Chemother. 2021;65(4):e01839–820. doi: 10.1128/AAC.01839-20 EDN: NPSGYH
- Furukawa T, van Rhijn N, Fraczek M, et al. The negative cofactor 2 complex is a key regulator of drug resistance in Aspergillus fumigatus. Nat Commun. 2020;11(1):427. doi: 10.1038/s41467-019-14191-1 EDN: CRQXBA
- Yang G, Shi W, He W, et al. The mitochondrial protein Bcs1A regulates antifungal drug tolerance by affecting efflux pump expression in the filamentous pathogenic fungus Aspergillus fumigatus. Microbiol Spectr. 2024;12(10):e0117224. doi: 10.1128/spectrum.01172-24 EDN: OPZDHV
- Kaur S, Singh S. Biofilm formation by Aspergillus fumigatus. Med Mycol. 2014;52(1):2–9. doi: 10.3109/13693786.2013.819592
- Beauvais A, Fontaine T, Aimanianda V, Latgé JP. Aspergillus cell wall and biofilm. Mycopathologia. 2014;178(5-6):371–377. doi: 10.1007/s11046-014-9766-0 EDN: BZUWPZ
- Rajendran R, Mowat E, McCulloch E, et al. Azole resistance of Aspergillus fumigatus biofilms is partly associated with efflux pump activity. Antimicrob Agents Chemother. 2011;55(5):2092–2097. doi: 10.1128/AAC.01189-10
- Tashiro M, Izumikawa K, Hirano K, et al. Correlation between triazole treatment history and susceptibility in clinically isolated Aspergillus fumigatus. Antimicrob Agents Chemother. 2012;56(9):4870–4875. doi: 10.1128/AAC.00514-12
- Fakhim H, Badali H, Dannaoui E, et al. Trends in the prevalence of amphotericin B-resistance (AmBR) among clinical isolates of Aspergillus species. J Mycol Med. 2022;32(4):101310. doi: 10.1016/j.mycmed.2022.101310 EDN: UJHYAS
- Shchekotikhin AE, Olsufieva EN, Yankovskaya VS. Antibiotics and related compounds. Moscow: Laboratoriya znanij; 2022. (In Russ.)
- de Kruijff B, Demel RA. Polyene antibiotic-sterol interactions in membranes of Acholeplasma laidlawii cells and lecithin liposomes. 3. Molecular structure of the polyene antibiotic-cholesterol complexes. Biochim Biophys Acta. 1974;339(1):57–70. doi: 10.1016/0005-2736(74)90332-0 EDN: XRZTDX
- Gray KC, Palacios DS, Dailey I, et al. Amphotericin primarily kills yeast by simply binding ergosterol. Proc Natl Acad Sci U S A. 2012;109(7):2234–2239. doi: 10.1073/pnas.1117280109 EDN: XZJOUM
- Jukic E, Blatzer M, Posch W, et al. Oxidative stress response tips the balance in Aspergillus terreus amphotericin B resistance. Antimicrob Agents Chemother. 2017;61(10):e00670–17. doi: 10.1128/AAC.00670-17 EDN: YJWJWW
- Reichert-Lima F, Lyra L, Pontes L, et al. Surveillance for azoles resistance in Aspergillus spp. Highlights a high number of amphotericin B-resistant isolates. Mycoses. 2018;61(6):360–365. doi: 10.1111/myc.12759
- Vahedi Shahandashti R, Lass-Flörl C. Antifungal resistance in Aspergillus terreus: A current scenario. Fungal Genet Biol. 2019;131:103247. doi: 10.1016/j.fgb.2019.103247 EDN: ZZMAPZ
- Zhao Y, Perez WB, Jiménez-Ortigosa C, et al. CD101: a novel long-acting echinocandin. Cell Microbiol. 2016;18(9):1308–1316. doi: 10.1111/cmi.12640 EDN: WSHQPV
- Li Y, Lan N, Xu L, Yue Q. Biosynthesis of pneumocandin lipopeptides and perspectives for its production and related echinocandins. Appl Microbiol Biotechnol. 2018;102(23):9881–9891. doi: 10.1007/s00253-018-9382-x EDN: HZUPZA
- Jiang K, Luo P, Wang X, Lu L. Insight into advances for the biosynthetic progress of fermented echinocandins of antifungals. Microb Biotechnol. 2024;17(1):e14359. doi: 10.1111/1751-7915.14359 EDN: UONQUZ
- Veselov AV. The current place of echinocandins in the treatment and prophylaxis of invasive fungal infections. Clinical Microbiology and Antimicrobial Chemotherapy. 2020;22(3):197–209. doi: 10.36488/cmac.2020.3.197-209 EDN: SYYTBM
- Curto MÁ, Butassi E, Ribas JC, et al. Natural products targeting the synthesis of β(1,3)-D-glucan and chitin of the fungal cell wall. Existing drugs and recent findings. Phytomedicine. 2021;88:153556. doi: 10.1016/j.phymed.2021.153556 EDN: HXEEYQ
- E Silva AP, Miranda IM, Branco J, et al. FKS1 mutation associated with decreased echinocandin susceptibility of Aspergillus fumigatus following anidulafungin exposure. Sci Rep. 2020;10(1):11976. doi: 10.1038/s41598-020-68706-8 EDN: TLXNEU
Дополнительные файлы

