Влияние хронического стресса на поведение мышей, нокаутированных по рецептору TAAR1, в тестах, оценивающих депрессивноподобное состояние

Обложка

Цитировать

Полный текст

Аннотация

Целью исследования было изучение функциональной роли рецептора TAAR1 в формировании поведенческого компонента стрессорного ответа. Поведение мышей с нокаутом по TAAR1 и мышей дикого типа (WT) изучали в тестах, отражающих депрессивно подобное состояние до и после окончания действия хронического стресса (модель стресса “запах хищника” (predator stress)), а также отсроченные изменения в поведении спустя 6 недель. В тесте подвешивания за хвост и тесте принудительного плавания по Порсолту между группами TAAR1–KO и WT нет отличий по показателям депрессивно подобного поведения как в норме, так и после хронического стрессорного воздействия. Однако мыши TAAR1–KO, попадая в начале тестирования в стрессорную ситуацию, демонстрируют двигательную гиперактивность, что приводит к резкому увеличению латентных периодов первой иммобилизации в обоих тестах. Нокаут рецептора TAAR1 не влияет на признаки депрессивно подобного поведения, однако приводит к характерному повышению уровня двигательной активности. Мыши TAAR1–KO продемонстрировали более выраженную реакцию на хроническое стрессорное воздействие, набор массы тела после окончания действия стрессора у них происходил значительно медленнее, чем у мышей WT, так что в течение 5 последних недель масса тела животных TAAR1–KO была достоверно меньше, чем у мышей дикого типа. Обнаружено, что через 6 недель после окончания стрессорного воздействия показатели депрессивно подобного состояния у мышей TAAR1–KO и WT продолжают увеличиваться.

Об авторах

Е. П. Виноградова

Санкт-Петербургский государственный университет

Email: e.vinogradova@spbu.ru
Санкт-Петербург, Россия

А. Ю. Александров

Санкт-Петербургский государственный университет

Санкт-Петербург, Россия

Д. В. Беляков

Санкт-Петербургский государственный университет

Санкт-Петербург, Россия

Е. С. Дмитриева

Санкт-Петербургский государственный университет

Санкт-Петербург, Россия

Л. Н. Станкевич

Санкт-Петербургский государственный университет

Санкт-Петербург, Россия

А. А. Александров

Санкт-Петербургский государственный университет

Санкт-Петербург, Россия

Список литературы

  1. Kemp J, Lickel J, Deacon B (2014) Effects of a chemical imbalance causal explanation on individuals' perceptions of their depressive symptoms. Behav Res Ther 56: 47–52. https://doi.org/10.1016/j.brat.2014.02.009
  2. Gainetdinov R, Hoener M, Berry M (2018) Trace Amines and Their Receptors. Pharmacol Rev 70(3): 549–620. https://doi.org/10.1124/pr.117.015305
  3. Rutigliano G, Accorroni A, Zucchi R (2018) The case for TAAR1 as a modulator of central nervous system function. Front Pharmacol 8: 987. https://doi.org/10.3389/fphar.2017.00987
  4. Rutigliano G, Zucchi R (2020) Molecular Variants in Human Trace Amine-Associated Receptors and Their Implications in Mental and Metabolic Disorders. Cell Mol Neurobiol 40(2): 239–255. https://doi.org/10.1007/s10571-019-00743-y
  5. Виноградова ЕП, Симон ЮА, Александров АЮ, Князева ВМ, Станкевич ЛН, Козырева АВ, Александров АА (2023) У самок мышей нокаутов по гену TAAR1 отсутствует ранний поведенческий ответ на острый иммобилизационный стресс. Росс физиол журн им ИМ Сеченова 109(11): 1650–1664. [Vinogradova E, Simon Yu, Aleksandrov A, Stankevich L, Knyazeva V, Aleksandrov A (2023) Mice Lacking TAAR1 Show No Early Behavioral Response to Acute Restraint Stress109(11): 1650–1664. (In Russ)] / https://doi.org/10.31857/S0869813923110122
  6. Nestler E, Hyman S (2010) Animal models of neuropsychiatric disorders. Nat Neurosci 13(10): 1161–1169. https://doi.org/10.1038/nn.2647
  7. Ménard C, Hodes G, Russo S (2016) Pathogenesis of depression: Insights from human and rodent studies. Neuroscience 321: 138–162. https://doi.org/10.1016/j.neuroscience.2015.05.053
  8. Flint J, Kendler K (2014) The genetics of major depression. Neuron 81(3): 484–503. https://doi.org/10.1016/j.neuron.2014.01.027
  9. Cheng Y, Rodriguiz R, Murthy S, Senatorov V, Thouennon E, Cawley N, Aryal D, Ahn S, Lecka-Czernik B, Wetsel W, Loh Y (2015) Neurotrophic factor-α1 prevents stress-induced depression through enhancement of neurogenesis and is activated by rosiglitazone. Mol Psychiatry 20: 744–754. https://doi.org/10.1038/mp.2014.136
  10. Jung Y, Hong S, Ma S, Hwang J, Kim J, Lee J, Seo J, Lee S, Jang C (2014) Strain differences in the chronic mild stress animal model of depression and anxiety in mice. Biomol Ther (Seoul) 22(5): 453–459. https://doi.org/10.4062/biomolther.2014.058
  11. Kudryavtseva N, Bakshtanovskaya I, Koryakina L (1991) Social model of depression in mice of C57BL/6J strain. Pharmacol Biochem Behav 38(2): 315–320. https://doi.org/10.1016/0091-3057(91)90284-9
  12. Kigar S, Cuarenta A, Zuniga C, Chang L, Auger A, Bakshi V (2024) Brain, behavior, and physiological changes associated with predator stress-An animal model for trauma exposure in adult and neonatal rats. Front Mol Neurosci 29(17): 1322273. https://doi.org/10.3389/fnmol.2024.1322273
  13. Rajbhandari A, Baldo B, Bakshi V (2015) Predator stress-induced CRF release causes enduring sensitization of basolateral amygdala norepinephrine systems that promote PTSD-like startle abnormalities. J Neurosci 35: 14270–14285. https://doi.org/10.1523/JNEUROSCI.5080-14.2015
  14. Tseng Y, Zhao B, Ding H, Liang L, Schaefke B, Wang L (2023) Systematic evaluation of a predator stress model of depression in mice using a hierarchical 3D-motion learning framework. Transl Psychiatry 13(1): 178. https://doi.org/10.1038/s41398-023-02481-8
  15. Figueiredo H, Bodie B, Tauchi M, Dolgas C, Herman J (2003) Stress integration after acute and chronic predator stress: differential activation of central stress circuitry and sensitization of the hypothalamo-pituitary-adrenocortical axis. Endocrinology 144: 5249–5258. https://doi.org/10.1210/en.2003-0713
  16. Belzung C, El Hage W, Moindrot N, Griebel G (2001) Behavioral and neurochemical changes following predatory stress in mice. Neuropharmacology 41: 400–408. https://doi.org/10.1016/s0028-3908(01)00072-7
  17. Маланьина Т (2013) Химические сигналы хищника провоцируют хронический эмоциональный стресс у домовых мышей. Cовр пробл науки образов 1: 337. [Malanina T (2013) Predator chemical signals induced chronic emotional stress in house mouse. Modern Probl Sci Educ: 337. (In Russ)].
  18. Diamond D, Campbell А, Park C, Woodson J, Conrad C, Bachstetter A, Mervis R (2006) Influence of predator stress on the consolidation versus retrieval of long-term spatial memory and hippocampal spinogenesis. Hippocampus 16: 571–576. https://doi.org/10.1002/hipo.20188
  19. Morrow B, Redmond A, Roth R, Elsworth J (2000) The predator odor, TMT, displays a unique, stress-like pattern of dopaminergic and endocrinological activation in the rat. Brain Res 864(1): 146–151. https://doi.org/10.1016/s0006-8993(00)02174-0
  20. Cryan J, Mombereau C, Vassout A (2005) The tail suspension test as a model for assessing antidepressant activity: review of pharmacological and genetic studies in mice. Neurosci Biobehav Rev 29: 571–625. https://doi.org/10.1016/j.neubiorev.2005.03.009
  21. Can A, Dao D, Arad M, Terrillion C, Piantadosi S, Gould T (2012) The mouse forced swim test. J Vis Exp 59: e3638. https://doi.org/10.3791/3638
  22. Yankelevitch-Yahav R, Franko M, Huly A, Doron R (2015) The Forced Swim Test as a Model of Depressive-like Behavior. J Vis Exp 97: e52587. https://doi.org/10.3791/52587
  23. Oka T, Oka K, Hori T (2001) Mechanisms and mediators of psychological stress-induced rise in core temperature. Psychosom Med 63(3): 476–486. https://doi.org/10.1097/00006842-200105000-00018
  24. Herborn K, Graves J, Jerem P, Evans N, Nager R, McCafferty D, McKeegan D (2015) Skin Temperature Reveals the Intensity of Acute Stress. Physiol Behav 152: 225–230. https://doi.org/10.1016/j.physbeh.2015.09.032
  25. Симон Ю, Виноградова Е, Козырева А, Александров А, Князева В, Станкевич Л, Маркина А, Иоффе В, Александров А (2024) Влияние нокаута гена TAAR1 на характеристики поведения мышей в тесте Порсолта и в приподнятом крестообразном лабиринте. Вестн Томск гос универ Биология 68: 157–172. [Simon Y, Vinogradova E, Kozyreva A, Aleksandrov A, Knyazeva V, Stankevich L, Markina A, Ioffe V, Aleksandrov A (2024) Effect of TAAR1 knockout on behavioural characteristics of mice in the forced swim test and in the elevated plus maze test. Tomsk State Univer J Biol 68: 157–172. (In Russ)]. https://doi.org/10.17223/19988591/6819
  26. Rahi V, Kumar P (2021) Animal models of attention-deficit hyperactivity disorder (ADHD). Int J Dev Neurosci 81 (2): 107–124. https://doi.org/10.1002/jdn.10089
  27. Raony Í, Domith I, Lourenco M, Paes-de-Carvalho R, Pandolfo P (2022) Trace amine-associated receptor 1 modulates motor hyperactivity, cognition, and anxiety-like behavior in an animal model of ADHD. Progr Neuro-Psychopharmacol Biol Psychiatry 13(1): 178. https://doi.org/10.1038/s41398-023-02481-8
  28. Leo D, Gainetdinov R (2013) Transgenic mouse models for ADHD. Cell Tissue Res 354 (1): 259–271. https://doi.org/ 10.1007/s00441-013-1639-1
  29. Revel F, Moreau J, Gainetdinov R, Ferragud A, Vel´azquez-S´anchez C, Sotnikova T, Hoener M (2012) Trace amine-associated receptor 1 partial agonism reveals novel paradigm for neuropsychiatric therapeutics. Biol Psychiatry 72(11): 934–942. https://doi.org/10.1016/j.biopsych.2012.05.014
  30. Eur Convention for the Protection of Vertebrate Animals Used for Experimentation and other Scientific Purposes 1986.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».