Features of Brain Damage after Gamma-Neutron Irradiation of the Head and Modification of the Damage by Lactoferrin
- Autores: Rodina A.V.1, Vysotskaya O.V.1, Zhirnik A.S.1, Smirnova O.D.1, Parfenova A.A.1, Strepetov A.N.1, Semochkina Y.P.1, Nesterenko M.V.2, Moskaleva E.Y.1
-
Afiliações:
- National Research Center "Kurchatov Institute"
- LLC "Laktobio"
- Edição: Volume 68, Nº 2 (2023)
- Páginas: 21-28
- Seção: Radiation Biology
- URL: https://medbiosci.ru/1024-6177/article/view/363818
- DOI: https://doi.org/10.33266/1024-6177-2023-68-2-21-28
- ID: 363818
Citar
Texto integral
Resumo
Purpose: To investigate the effect of γ, n-irradiation of the mice head on the brain cells damage, behavior and cognition, and to examine the possibility of using lactoferrin (LF) to alleviate radiation-induced impairments.
Material and methods: Mice heads were irradiated in a beam of neutrons and gamma rays from the IR-8 nuclear reactor. The brain cells of control and irradiated mice were isolated using Percoll. Neurons and resting and activated microglia cells were analyzed using the fluorescently labeled antibodies and flow cytometry. The level of DNA double-strand breaks in neurons was determined by γH2AX histone content. Cytokine gene expression in the hippocampus was studied by RT-PCR. Behavior and cognitive functions were studied using the open field, Morris water maze and novel object recognition tests. LF was isolated from female colostrum by preparative ion-exchange chromatography and purified by affinity chromatography on heparin-sepharose.
Results: γ, n-Irradiation of the mice head at a dose of 1.5 Gy led to an increase in the level of DNA double-strand breaks in neurons. Twenty-four hours after irradiation the total number of cells and the number of neurons in the isolated fraction of brain cells decreased, but the number of microglial cells remained unchanged. The number of resting and activated microglia did not change within 3–72 h after γ, n-irradiation. The expression level of the TNFα, IL-1β, and IL-6 genes increased 2 months after γ, n-irradiation of the mice head at a dose of 1.5 Gy, indicating the development of neuroinflammation. At this time, irradiated mice demonstrated the anxiety-like behavior and impaired spatial and recognition memory. A single i.p. administration of human LF to mice immediately after γ, n-irradiation of the head did not affect the observed radiation-induced disturbances, but decreased the gene expression levels of TNFα, IL-1β and IL-6 pro-inflammatory cytokines and increased the gene expression level of TGFβ anti-inflammatory cytokine in the hippocampus 2 months after radiation exposure. The obtained results indicate a partial decrease in the level of hippocampal neuroinflammation of irradiated animals treated with LF.
Conclusion: γ, n-Irradiation of the mice head at a dose of 1.5 Gy leads to DNA damage of neurons and the decrease in the number of neurons. Microglia cells are more resistant to such radiation exposure. Late after head-only γ, n-irradiation, mice develop neuroinflammation, which is detected by an increase in the pro-inflammatory cytokine gene expression in the hippocampus and also by anxiety-like behavior and impaired cognitive functions. A single LF administration leads to a partial decrease in the neuroinflammation level, but does not affect the other studied parameters. The optimal dosing regimen of LF remains to be determined to preserve cognitive functions after γ, n-irradiation of the brain.
Palavras-chave
Sobre autores
A. Rodina
National Research Center "Kurchatov Institute"
Email: moskalevaey@mail.ru
Moscow, Russia
O. Vysotskaya
National Research Center "Kurchatov Institute"
Email: moskalevaey@mail.ru
Moscow, Russia
A. Zhirnik
National Research Center "Kurchatov Institute"
Email: moskalevaey@mail.ru
Moscow, Russia
O. Smirnova
National Research Center "Kurchatov Institute"
Email: moskalevaey@mail.ru
Moscow, Russia
A. Parfenova
National Research Center "Kurchatov Institute"
Email: moskalevaey@mail.ru
Moscow, Russia
A. Strepetov
National Research Center "Kurchatov Institute"
Email: moskalevaey@mail.ru
Moscow, Russia
Yu. Semochkina
National Research Center "Kurchatov Institute"
Email: moskalevaey@mail.ru
Moscow, Russia
M. Nesterenko
LLC "Laktobio"
Email: moskalevaey@mail.ru
Moscow, Russia
E. Moskaleva
National Research Center "Kurchatov Institute"
Email: moskalevaey@mail.ru
Moscow, Russia
Bibliografia
- Гулидов И.А., Асланиди И.П. О состоянии и перспективах развития дистанционной нейтронной терапии // Вопросы онкологии. 2014. Т.60, № 4. С. 408–412.
- Мусабаева Л.И., Лисин В.А., Старцева Ж.А., Грибова О.В., Великая В.В., Мельников А.А. Нейтронная терапия на циклотроне U-120. К 30-летию применения нейтронной терапии – обзор результатов научных исследований // Медицинская радиология и радиационная безопасность. 2013. Т.58, № 2. С. 53–61.
- Великая В.В., Старцева Ж.А., Лисин В.А., Гольдберг В.Е., Попова Н.О. Адъювантная нейтронная терапия в комплексном лечении больных первично-метастатическим раком молочной железы // Медицинская радиология и радиационная безопасность. 2022. Т.67, № 5. С. 64–68. doi: 10.33266/1024-6177-2022-67-5-64-68.
- Мусабаева Л.И., Чойнзонов Е.Л., Грибова О.В., Старцева Ж.А., Великая В.В., Лисин В.А. Нейтронная терапия в лечении радиорезистентных злокачественных новообразований // Сибирский онкологический журнал. 2016. Т.15, № 3. С. 67–71. doi: 10.21294/1814-4861-2016-15-3-67-71.
- Walenta S., Mueller-Klieser W. Differential Superiority of Heavy Charged-Particle Irradiation to X-Rays: Studies on Biological Effectiveness and Side Effect Mechanisms in Multicellular Tumor and Normal Tissue Models // Front Oncol. 2016. No. 6. P. 30. doi: 10.3389/fonc.2016.00030.
- Матчук О.Н., Замулаева И.А., Селиванова Е.И., Липунов Н.М., Пронюшкина К.А., Ульяненко С.Е. и др. Чувствительность клеток SP линии меланомы В16 к действию редко- и плотноионизирующего излучений // Радиационная биология. Радиоэкология. 2012. Т.52, № 3. С. 261–267.
- Shuvatova V.G., Semochkina Y.P., Strepetov A.N., Moskaleva E.Y. Sensitivity of MCF-7 Mammosphere CSCs to Neutron Radiation // Journal of Cancer Metastasis and Treatment. 2022. V.8, No. 5. P. 23. doi: 10.20517/2394-4722.2022.29.
- Yang L., Yang J., Li G., Li Y., Wu R., Cheng J., et al. Pathophysiological Responses in Rat and Mouse Models of Radiation-Induced Brain Injury // Mol. Neurobiol. 2017. V.54, No. 2. P. 1022–1032. doi: 10.1007/s12035-015-9628-x.
- Eyo U.B., Dailey M.E. Microglia: Key Elements in Neural Development, Plasticity, and Pathology // J. Neuroimmune Pharmacol. 2013. V.8. No. 3. P. 494–509. doi: 10.1007/s11481-013-9434-z.
- Thompson K.K., Tsirka S.E. The Diverse Roles of Microglia in the Neurodegenerative Aspects of Central Nervous System (CNS) Autoimmunity // Int. J. Mol. Sci. 2017. V.18, No. 3. P. 504. doi: 10.3390/ijms18030504.
- Kalm M., Andreasson U., Bjork-Eriksson T., Zetterberg H., Pekny M., Blennow K., et al. C3 Deficiency Ameliorates the Negative Effects of Irradiation of the Young Brain on Hippocampal Development and Learning // Oncotarget. 2016. V.7, No. 15. P. 19382–19394. doi: 10.18632/oncotarget.8400.
- Rodina A.V., Semochkina Y.P., Vysotskaya O.V., Romantsova A.N., Strepetov A.N., Moskaleva E.Y. Low Dose Gamma Irradiation Pretreatment Modulates the Sensitivity of CNS to Subsequent Mixed Gamma and Neutron Irradiation of the Mouse Head // Int. J. Radiat. Biol. 2021. V.97. No. 7. P. 926–942. doi: 10.1080/09553002.2021.1928787.
- Feng L., Li J., Qin L., Guo D., Ding H., Deng D. Radioprotective Effect of Lactoferrin in Mice Exposed to Sublethal X-Ray Irradiation // Exp. Ther. Med. 2018. V.16, No. 4. P. 3143–3148. doi: 10.3892/etm.2018.6570.
- Kopaeva M.Y., Alchinova I.B., Cherepov A.B., Demorzhi M.S., Nesterenko M.V., Zarayskaya I.Y., et al. New Properties of a Well-Known Antioxidant: Pleiotropic Effects of Human Lactoferrin in Mice Exposed to Gamma Irradiation in a Sublethal Dose // Antioxidants (Basel). 2022. V.11, No. 9. P. 1833. doi: 10.3390/antiox11091833.
- Иванов А.А., Уланова А.М., Дешевой Ю.Б., Мальцев В.Н. Пат. 2294755 Рос. Федерация, МПК A61K38/40, A61P7/06, A61P37/02, A61N5/10/. Средство лечения лучевой болезни. Заявитель и патентообладатель ФГБУ ГНЦ ФМБЦ им. А.И. Бурназяна ФМБА России. № RU2294755C1; заявл. 21.06.2005; опубл. 10.03.2007, Бюл. № 7. – 6 с.
- Arzumanov S.S., Safronov V.V., Strepetov A.N. Determination of a Dose Absorbed in a Biological Sample under Mixed Gamma–Neutron Irradiation // Technical Physics. 2018. V.63, No. 10. P. 1533–1536. doi: 10.1134/S1063784218100031.
- Жирник А.С., Смирнова О.Д., Семочкина Ю.П., Шибаева К.Д., Родина А.В., Ратушняк М.Г. и др. Нарушение когнитивных функций и развитие нейровоспаления в отдаленный период после однократного γ-облучения головы мышей // Радиационная биология. Радиоэкология. 2021. Т.61, № 1. С. 32–43. doi: 10.31857/S0869803121010112.
- Жирник А.С., Родина А.В., Семочкина Ю.П., Высоцкая О.В., Смирнова О.Д., Ратушняк М.Г. и др. Когнитивные нарушения и состояние глиальных клеток мозга в отдаленный период после гамма-облучения головы мышей // Медицинская радиология и радиационная безопасность. 2022. Т.67, № 5. С. 10–17. doi: 10.33266/1024-6177-2022-67-5-10-17. 23.
- Посыпанова Г.А., Ратушняк М.Г., Семочкина Ю.П., Абишева А.А., Москалева Е.Ю. Чувствительность культивируемых нейральных стволовых клеток мыши к действию ионизирующего излучения // Цитология. 2019. Т.61, № 10. С. 806–816. doi: 10.1134/S0041377119100067.
- Москалева Е.Ю., Родина А.В., Чукалова А.А., Посыпанова Г.А. Влияние облучения на мезенхимальные стволовые клетки костного и головного мозга мыши и их способность индуцировать опухоли // Радиационная биология. Радиоэкология. 2017. Т.57, № 3.С. 245–256. doi: 10.7868/S0869803117030018.
Arquivos suplementares
