Distribution of Radiocarbon in the Environment under Normal Conditions of Operating of Kurskaya Nuclear Power Plant
- 作者: Barchukov V.G.1, Kochetkov O.A.1, Klochkov V.N.1, Eremina N.A.1, Surin P.P.1, Maximov A.A.1, Kabanov D.I.1, Velichko V.K.1, Bogdanenko N.A.1, Alsagaev Z.I.1
-
隶属关系:
- A.I. Burnazyan Federal Medical Biophysical Center
- 期: 卷 68, 编号 1 (2023)
- 页面: 25-33
- 栏目: Radiation Safety
- URL: https://medbiosci.ru/1024-6177/article/view/363806
- DOI: https://doi.org/10.33266/1024-6177-2023-68-1-25-33
- ID: 363806
如何引用文章
全文:
详细
Introduction: 14C is one of the fifteen radionuclides that account for at least 99 % of the radiation dose to the critical group of the population from NPP emission sources. The continuous growth of the total capacity of operating NPPs leads to a significant increase in the amount of 14С emitted into the environment during NPP operation. Efficient capture and disposal of 14C, which has a half-life of 5760 years, is a very laborious undertaking. At the same time, due to the high mobility of this radionuclide, local foci of contamination with 14C can appear both near the NPP at a distance of 1–2 km from its ventilation pipe, and in soil and plants located at a distance of 20–30 km from the NPP due to the transfer of air masses. Therefore, the control of the formation of 14C during the operation of nuclear power plants, its content in emissions and discharges of nuclear power plants, as well as distribution in the environment is an urgent problem today.
Purpose: Analysis of the environmental pollution due to emissions and discharges of radiocarbon from the Kurskaya nuclear power plant.
Material and methods: During the research, a method being developed by specialists of the Laboratory for Radiation Safety of Personnel was used to determine the specific activity of 14C in soil and vegetation. To explore the 14C content in the air, the method of bubbling air through a TASC-HT-HTO-C-14 flow meter-sampler (Overhoff technology, USA) and the method of air conditioning through a Ballu BDH-15L air dryer (Ballu, Russia) were used. To prepare counting samples from selected soil and food samples, a method based on the combustion of selected samples in a Pyrolyser-6 Trio catalytic decomposition system was used. All prepared counting samples, including samples from surface water and biosubstrate of the personnel of the Kursk NPP and the population, were measured by liquid scintillation spectrometry on a Tri-Carb 3180 TR/SL alpha, beta spectrometer.
Results: On the basis of an integrated approach to assessing the content of 14C in air, water, soil and food, an analysis of the formation of environmental pollution due to emissions and discharges 14C from the Kurskaya NPP was carried out.
Conclusions: An increased content of the 14C radionuclide in soil samples, food products and vegetation in the area of the Kursk NPP with RBMK-1000 nuclear reactors is shown, both in comparison with the content of natural 14C and NPPs operating BN-600,800 and VVER-1000 nuclear reactors. The necessity of taking into account radiocarbon emissions from NPPs into the environment in the problem of optimizing the radiation protection of the population under the conditions of normal operation of NPPs is confirmed.
作者简介
V. Barchukov
A.I. Burnazyan Federal Medical Biophysical Center
Email: barchval@yandex.ru
Moscow
O. Kochetkov
A.I. Burnazyan Federal Medical Biophysical Center
Email: barchval@yandex.ru
Moscow
V. Klochkov
A.I. Burnazyan Federal Medical Biophysical Center
Email: barchval@yandex.ru
Moscow
N. Eremina
A.I. Burnazyan Federal Medical Biophysical Center
Email: barchval@yandex.ru
Moscow
P. Surin
A.I. Burnazyan Federal Medical Biophysical Center
Email: barchval@yandex.ru
Moscow
A. Maximov
A.I. Burnazyan Federal Medical Biophysical Center
Email: barchval@yandex.ru
Moscow
D. Kabanov
A.I. Burnazyan Federal Medical Biophysical Center
Email: barchval@yandex.ru
Moscow
V. Velichko
A.I. Burnazyan Federal Medical Biophysical Center
Email: barchval@yandex.ru
Moscow
N. Bogdanenko
A.I. Burnazyan Federal Medical Biophysical Center
Email: barchval@yandex.ru
Moscow
Zh. Alsagaev
A.I. Burnazyan Federal Medical Biophysical Center
Email: barchval@yandex.ru
Moscow
参考
- Рублевский В.П., Яценко В.Н. Особенности радиационного и биологического действия14С на живые организмы и опасность его накопления в биосфере Земли // Атомная энергия. 2018. Т.12, № 5. С. 301–306.
- Рублевский В.П., Яценко В.Н., Чанышев Е.Г. Роль углерода-14 в техногенном облучении человека / Под ред. Кочеткова О.А. М.: ИздАТ, 2004. 197 с. ISBN 5-86656-160-3.14.
- Radionuclide Fact Sheet. Carbon-14 and the Environment. IRSN, 2010. 19 p. URL: www.irsn.fr.
- Sources and Effects of Ionizing Radiation // Report to the General Assembly UNSCEAR. V.1: Sources. New York: United Nations, 2000.
- Назаров Е.И., Екидин А.А., Васильев А.В. Оценка поступления углерода-14 в атмосферу, обусловленного выбросами АЭС // Известия высших учебных заведений. Физика. 2018. Т.61, № 12–2. С. 67–73.
- Екидин А.А., Жуковский М.В., Васянович М.Е. Идентификация основных дозообразующих радионуклидов в выбросах АЭС // Атомная энергия. 2016. Т.120, № 2. С. 106–108.
- Крышев А.И., Крышев И.И., Васянович М.Е. и др. Оценка дозы облучения населения от выброса 14С АЭС с РБМК-1000 и ЭГП-6 // Атомная энергия. 2020. Т.128, № 1. С. 48-52.
- Панченко С.В., Линге И.И. и др. Радиоэкологическая обстановка в регионах расположения предприятий Росатома / Под ред. Линге И.И., Крышева И.И. М.: САМ полиграфист. 2015. C. 296.
- Отчет об экологической безопасности за 2015 год. Росэнергоатом, Курская АЭС. URL: http://фцп-ярб2030.рф/upload/iblock/4a2/4a2288b0372c09ebf0a78d5c47718105.pdf.
- Vay S.A., Tyler S.C., Choi Y., Blake D.R., Blake N.J., Sachse G.W., Diskin G.S., Singh H.B. Sources and Transport of C-14 in CO2 Within the Mexico City Basin and Vicinity // Atmos. Chem. Phys. 2009. No. 9. P. 4973–4985.
- URL: https://world-weather.ru/archive/russia/kurchatov/.
- Методика определения концентрации органических и неорганических соединений трития в воздухе окружающей среды и производственных помещений: Методические указания по методам контроля. МУК 4.3.047 – 2017. М., 2017.
- Методика определения объемной активности органических и неорганических соединений трития в водных объектах методом жидкосцинтилляционной спектрометрии: Методические указания по методам контроля. МУК 4.3.044 -2012. М., 2012.
- Выполнение измерений при радиационном контроле трития и углерода-14 в помещениях АЭС с применением расходомера-пробоотборника TASC-HT-HTO-C14 (МВК): Методика МТ 1.2.1.15.002. 0238-2014.
- Руководство пользования прибором Tri-Carb 3180 TR/SL.
- Руководство пользования прибором Pyrolyser-6 Trio.
- Щепащенко Д.Г., Мухортова Л.В., Швиденко А.З., Ведрова Э.Ф. Запасы органического углерода в почвах России // Почвоведение. 2013. № 2, с.125.
补充文件
