Theoretical Analysis of the Radiation Quality and the Relative Biological Efficiency of Tritium

封面

如何引用文章

全文:

详细

Introduction

1. Tritium and reference radiation

1.1 Tritium isotope and its energy spectrum

1.2 Reference radiation

2. Methods for determining the quality of radiation and RBE

2.1 Radiation quality in microdosimetry

2.2 RBE by the number of DNA double-strand breaks

2.3 RBE by fraction of secondary low-energy electrons

3. Analysis of calculations of radiation quality and tritium RBE

3.1 Estimation of tritium emission quality factors

3.2 Evaluation of the RBE of tritium radiation during its action on DNA

3.3 Estimation of the RBE of tritium from the fraction of secondary low-energy electrons

3.4 Quality factors and RBE of tritium with respect to reference emissions

Conclusion

作者简介

S. Rodneva

A.I. Burnazyan Federal Medical Biophysical Center

Email: sontyaga@yandex.ru
Moscow, Russia

D. Guryev

A.I. Burnazyan Federal Medical Biophysical Center; N.N. Semenov Federal Research Center for Chemical Physics

Email: sontyaga@yandex.ru
Moscow, Russia; Moscow, Russia

参考

  1. McMahon S.J., Prise K.M. Mechanistic Modelling of Radiation Responses (Review). Cancers. 2019;11:205. doi: 10.3390/cancers11020205.
  2. Bernal M.A., Bordage M.C., Brown J.M.C., Davfdkova M., Delage E., Bitar Z., et al. Track Structure Modeling in Liquid Water: a Review of the Geant4-DNA Very Low Energy Extension of the Geant4 Monte Carlo Simulation Toolkit. Phys. Med. 2015;31:861–874. doi: 10.1016/j.ejmp.2015.10.087.
  3. Kellerer A., Chmelevsky D. Concepts of Microdosimetry II. Probability Distributions of the Microdosimetric Variables. Radiat Environ Biophysics. 1975;12:321–335. doi: 10.1007/BF01327348.
  4. Famulari G., Pater P., Enger S.A. Microdosimetry Calculations for Monoenergetic Electrons Using Geant4-DNA Combined with a Weighted Track Sampling Algorithm. Phys. Med. Biol. 2017;62:5495–5508. doi: 10.1088/1361-6560/aa71f6.
  5. Chatzipapas K.P., Papadimitroulas P., Emfietzoglou D., Kalospyros S.A., Hada M., Georgakilas A.G., Kagadis G.C. Ionizing Radiation and Complex DNA Damage: Quantifying the Radiobiological Damage Using Monte Carlo Simulations. Cancers. 2020;22:799. doi: 10.3390/cancers12040799.
  6. Kyriakou I., Sakata D., Tran H.N., Perrot Y., Shin W.G., Lampe N., et al. Review of the Geant4-DNA Simulation Toolkit for Radiobiological Applications at the Cellular and DNA Level. Cancers. 2021;14:35. doi: 10.3390/cancers14010035.
  7. Goodhead D.T. Biological Effectiveness of Lower-Energy Photons for Cancer Risk. Radiat Protect Dosim. 2018;183:197–202. doi: 10.1093/rpd/ncy246.
  8. Goodhead D.T. The Relevance of Dose for Low-Energy Beta Emitters. J. Radiol Prot. 2009;29:321–333. doi: 10.1088/0952-4746/29/3/S01.
  9. Goodhead D.T. Energy Deposition Stochastics and Track Structure: what about the Target? Radiat Protect Dosim. 2006;122:3-15. doi: 10.1093/rpd/ncl498.
  10. UNSCEAR 2016 Report. Annex C: Biological Effects of Selected Internal Emitters-Tritium. New York, 2016. P. 241_359.
  11. Kyriakou I., Tremi I., Georgakilas A.G., Emfietzoglou D. Microdosimetric Investigation of the Radiation Quality of Low-Medium Energy Electrons Using Geant4-DNA. Appl. Radiat Isot. 2021;172:109654. doi: 10.1016/j.apradiso.2021.109654.
  12. Lai Y., Tsai M.Y., Tian Z., Qin N., Yan C., Hung S., et al. A New Open-Source GPU-Based Microscopic Monte Carlo Simulation Tool for the Calculations of DNA Damages Caused by Ionizing Radiation. Part II: Sensitivity and Uncertainty Analysis. Med. Phys. 2020;47;4:085015. doi: 10.1002/mp14036.
  13. ICRU 40. The Quality Factor in Radiation Protection. J. Int. Comm. Radiat Units Meas. 1986;21.
  14. Kellerer A.M., Hahn К. Considerations on a Revision of the Quality Factor. Radiat Res. 1988;114:480–488. doi: 10.2307/3577119.
  15. Kellerer A.M., Rossi H.H. The Theory of Dual Radiation Action. Curr. Top. Radiat. Res. 1972:8:85–158.
  16. Hawkins R.B. A Microdosimetric-Kinetic Theory of the Dependence of the RBE for Cell Death on LET. Med. Phys. 1998;25:1157–1170. doi: 10.1118/1.598307.
  17. Nikjoo H., Goodhead D.T. Track Structure Analysis Illustrating the Prominent Role of Low Energy Electrons in Radiobiological Effects of Low-LET Radiations. Phys. Med. Biol. 1991;36:229–238. doi: 10.1088/0031-9155/36/2/007.
  18. Bellamy M., Eckerman К. Relative Biologieal Effectiveness of Low-Energy Electrons and Photons. Letter Report. Oak Ridge National Laboratory. Washington, U.S. Environmental Protection Agency, 2013. https://www.epa.gov/sites/production/files/2015-05/ documents/epa-rbe-report-1 l-04-2013.pdf.
  19. Olko P. Microdosimetric Modelling of Physical and Biological Detectors. Report No 1914/D. The Henryk Niewodniczanski Institute of Nuclear Physics. Poland, Kraków, 2002. www.ifj.edu.pl/reports/2002.html.
  20. Chen J., Nekolla E., Kellerer A.M. A Comparative Study of Microdosimetric Properties of X Rays, γ -Rays, and β-Rays. Radiat Environ Biophys. 1996;35:263-266. doi: 10.1007/s004110050038.
  21. Chen J. Radiation Quality of Tritium: A Comparison with 60Co Gamma Rays. Radiat Prot. Dosim. 2013;56:372–375. doi: 10.1093/rpd/nct068.
  22. Morstin K., Kopec M., Olko P., Schmitz T., Feinendeged L.E. Microdosimetry of Tritium. Health Phys. 1993;65;6:648–656. doi: 10.1097/00004032-199312000-00004.
  23. Lund C.M. Microdosimetric Analysis of the Interactions of Mono-Energetic Neutrons with Human Tissue. Degree of Master of Science in Medical Physics. McGill University. Montreal, 2019. https://escholarship.mcgill.ca/concern/theses/8910jz75m.
  24. Margis S., Magouni M., Kyriakou I., Georgakilas A.G., Incerti S., Emfietzoglou D. Microdosimetric Calculations of the Direct DNA Damage Induced by Low Energy Electrons Using the Geant4-DNA Monte Carlo Code. Phys. Med. Biol. 2020. doi: 10.1088/1361-6560/ab6b47.
  25. Matsuya Y., Kai T., Yoshii Y., Yachi Y., Naijo S., Date H., Sato T. Modelling of Yield Estimation for DNA Strand Breaks Based on Monte Carlo Simulations of Electron Track Structure in Liquid Water. Appl. Phys. 2019;126:124701. doi: 10.1063/1.5115519.
  26. Friedland W., Jacob P., Paretzke H.G., Stork T. Monte Carlo Simulation of the Production of Short DNA Fragments by Low-Linear Energy Transfer Radiation Using Higher Order DNA Models. Radial Res. 1998;150:170-182. doi: 10.2307/3579852.
  27. Friedland W., Jacob P., Paretzke H.G., Merzagora M., Ottolenghi A. Simulation of DNA Fragment Distributions after Irradiation with Photons. Radiat Environ Biophys. 1999;38:39–47. doi: 10.1007/s004110050136.
  28. Nikjoo H., Lindborg L. RBE of Low Energy Electrons and Photons. Phys. Med. Biol. 2010;55:65–109. doi: 10.1088/0031-9155/55/10/R01.
  29. Hsiao Y., Stewart R.D. Monte Carlo Simulation of DNA Damage Induction by X-Rays and Selected Radioisotopes. Phys. Med. Biol. 2008;53:233-244. doi: 10.1088/0031-9155/53/1/016.

补充文件

附件文件
动作
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».