The Essence of Radiogenic Damages in the Lens: Threshold, Tissue Reactions (Deterministic Effects), but not Stochastic, Non-Threshold Effects
- 作者: Koterov A.N.1, Ushenkova L.N.1, Dibirgadzhiev I.G.1, Bulanova T.M.1, Kalinina M.V.1
-
隶属关系:
- A.I. Burnazyan Federal Medical Biophysical Center
- 期: 卷 69, 编号 4 (2024)
- 页面: 34-47
- 栏目: Radiation Safety
- URL: https://medbiosci.ru/1024-6177/article/view/363929
- DOI: https://doi.org/10.33266/1024-6177-2024-69-4-34-47
- ID: 363929
如何引用文章
全文:
详细
The purpose is to analyze the arguments ‘for’ and ‘against’ the assumption that radiogenic disturbances in the lens, previously considered as tissue reactions with a threshold (deterministic effects), may be stochastic events characterized by the absence of a threshold. The importance of the nature of radiation cataractogenesis for radiation safety is associated with the conceptual difference in approaches to developing Radiation Safety Standards. For threshold effects, Radiation Safety Standards with dose limits not exceeding the threshold is sufficient for 100 % protection, while for stochastic events, protection is based on the concept of ‘socially admissible risk’, since the probability of an effect exists at any radiation dose.
An analysis of four arguments in favor of the non-threshold and stochastic nature of radiogenic disturbances in the lens demonstrated that some considerations may not be relevant to the problem (such as the lack of a dose rate effect, which may be explained by the lack of DNA repair and cellular renewal in the lens). An attempt to justify the absence of a threshold of less than one by the value of the upper confidence interval for the risks in the cohort of victims of the atomic bombings is untenable based on the canons of statistics and epidemiology. Data on the effects of low-dose low-LET radiation (up to 0.1 Gy) on lens abnormalities are lacking for most study populations, and for those that have been reported (medical radiologists, industrial radiographers, and patients undergoing computed tomography), the results are inconsistent, non-system, and can be explained, among other things, by non-radiation factors. The last argument ‒ the molecular cellular prerequisites for the stochastic hypothesis (the presence of only a hypothetical biological mechanism) does not have direct evidentiary force in the field of epidemiology.
At the same time, there are strong arguments for the deterministic nature of radiogenic disorders in the lens. The main effect is the influence of the radiation dose on the severity of the pathology, which is typical only for tissue reactions. Experimental, epidemiological and environmental examples of dose dependencies for radiogenic disorders in the lens are presented, which cover almost all irradiated groups and conditions: effects on animals and people; radiation of different quality ‒ both low and high LET; for professional contingents, patients and residents of radioactively contaminated areas. Another argument is the long-term identification of threshold doses, both in laboratory and in epidemiological studies (from 2011–2012 to the present, the threshold is a dose of 0.5 Gy according to the ICRP and UNSCEAR). Based on these ICRP regulations, acceptable standards for lens irradiation were formed for professionals and the public.
The presented analytical study summarizes the discussion about the nature of radiogenic disorders in the lens: according to the totality of various correct data, these are threshold, tissue reactions (deterministic effects).
作者简介
A. Koterov
A.I. Burnazyan Federal Medical Biophysical Center
Email: govorilga@inbox.ru
Moscow
L. Ushenkova
A.I. Burnazyan Federal Medical Biophysical Center
Email: govorilga@inbox.ru
Moscow
I. Dibirgadzhiev
A.I. Burnazyan Federal Medical Biophysical Center
Email: govorilga@inbox.ru
Moscow
T. Bulanova
A.I. Burnazyan Federal Medical Biophysical Center
Email: govorilga@inbox.ru
Moscow
M. Kalinina
A.I. Burnazyan Federal Medical Biophysical Center
Email: govorilga@inbox.ru
Moscow
参考
- Котеров А.Н., Ушенкова Л.Н. Катарактогенные эффекты малых доз радиации с низкой ЛПЭ: скорее нет, чем есть. Сообщение 1. Постановка проблемы и эксперименты на животных // Радиац. биология. Радиоэкология. 2023. Т.63.№ 4. С. 341-354.
- Котеров А.Н., Ушенкова Л.Н. Катарактогенные эффекты малых доз радиации с низкой ЛПЭ: скорее нет, чем есть. Сообщение 2. Эпидемиологические исследования // Радиац. биология. Радиоэкология. 2023. Т.63. № 4. С. 355–386.
- Котеров А.Н., Ушенкова Л.Н., Дибиргаджиев И.Г., Вайнсон А.А., Калинина М.В., Бирюков А.П. Избыточный относительный риск катарактогенных нарушений хрусталика у работников ядерной индустрии: систематический обзор и мета-анализ // Мед. радиология и радиац. безопасность. 2023. Т.68. № 3. С. 21–32.
- Здравоохранение в России 2021: Статистический сборник. Росстат. М., 2021. -171 с.
- Ong H.S., Evans J.R., Allan B.D.S. Accommodative Intraocular Lens Versus Standard Monofocal Intraocular Lens Implantation in Cataract Surgery // Cochrane Database Syst. Rev. 2014. No. 5. P. CD009667. https://doi.org/10.1002/14651858.CD009667.pub2.
- Котеров А.Н. От очень малых до очень больших доз радиации: новые данные по установлению диапазонов и их экспериментально-эпидемиологичские обоснования // Мед. радиология и радиац. безопасность. 2013. Т. 58. № 2. С. 5-21.
- ICRP Publication 118. ICRP Statement on Tissue Reactions and Early and Late Effects of Radiation in Normal Tissues and Organs - Threshold Doses for Tissue Reactions in a Radiation Protection Context // Annals of the ICRP. Ed. Clement C.H. Amsterdam - New York: Elsevier, 2012. 325 p.
- Ainsbury E.A., Barnard S., Bright S., Dalke C., Jarrin M., Kunze S., et al. Ionizing Radiation Induced Cataracts: Recent Biological and Mechanistic Developments and Perspectives for Future Research // Mutat. Res. Rev. Mutat. 2016. V.770, No. Pt. B: P. 238–261. https://doi.org/10.1016/j.mrrev.2016.07.010.
- Ainsbury E.A., Dalke C., Hamada N., Benadjaoud M.A., Chumak V., Ginjaume M. et al. Radiation-Induced Lens Opacities: Epidemiological, Clinical and Experimental Evidence, Methodological Issues, Research Gaps and Strategy // Environ. 2021. No. 146. P. 106213. https://doi.org/110.1016/j.envint.2020.106213.
- Hamada N., Fujimichi Y. Classification of Radiation Effects for Dose Limitation Purposes: History, Current Situation and Future Prospects // J. Radiat. Res. 2014. V.55, No. 4. P. 629–640. https://doi.org/10.1093/jrr/rru019.
- Hamada N., Fujimichi Y., Iwasaki T., Fujii N., Furuhashi M., Kubo E., et al. Emerging Issues in Radiogenic Cataracts and Cardiovascular Disease // J. Radiat. Res. 2014. V. 55, No. 5. P. 831–846. https://doi.org/10.1093/jrr/rru036.
- Ainsbury L. Cataract Following Low Dose Ionising Radiation Exposures: Mechanistic Understanding and Current Research. CNSC/CRPA Webinar: ‘Lens of the eye’. 21st March 2018. - 19 slides. URL: https://crpa-acrp.ca/home/wp-content/uploads/2019/09/lens-of-the-eye-presentation-ainsbury.pdf (address data 2024/02/23).
- ICRP Publication 103. The 2007 Recommendations of the International Commission on Radiological Protection // Annals of the ICRP. Ed. Valentin J. Amsterdam - New York: Elsevier, 2007. 329 p.
- Котеров А.Н., Вайнсон А.А. Радиационный гормезис и эпидемиология канцерогенеза: «вместе им не сойтись» // Мед. радиология и радиац. безопасность. 2021.Т.66. № 2. С. 36-52.
- Boice J.D.Jr. The Linear Nonthreshold (LNT) Model as Used in Radiation Protection: an NCRP Update // Int. J. Radiat. Biol. 2017. V. 93, No. 10. P. 1079–1092. https://doi.org/10.1080/09553002.2017.1328750.
- Hamada N. Ionizing Radiation Sensitivity of the Ocular Lens and Its Dose Rate Dependence // Int. J. Radiat. Biol. 2017. V. 93, No. 10. P. 1024–1034. https://doi.org/10.1080/09553002.2016.1266407.
- Rubin P., Casarett G. A Direction for Clinical Radiation Pathology. The Tolerance Dose // Radiation Effects and Tolerance, Normal Tissue. Ed. Vaeth J.M. 6th Annual San Francisco Cancer Symposium, San Francisco, Calif., October 1970. Proceedings. Front Radiat Ther Oncol. Basel, Karger, 1972. V.6. P. 1-16. https://doi.org/10.1159/000392794.
- Ivanov V.K., Tsyb A.F., Panfilov A.P., Agapov A.M., Kaidalov O.V., Korelo A.M., et al. Estimation of Individualized Radiation Risk from Chronic Occupational Exposure in Russia // Health Phys. 2009. V. 97, No. 2. P. 107-114. https://doi.org/10.1097/01.HP.0000346702.02932.7d.
- Ainsbury E.A., Bouffler S.D., Dorr W., et al. Radiation Cataractogenesis: a Review of Recent studies // Radiat. Res. 2009. V.172, No. 1. P. 1-9. https://doi.org/10.1667/RR1688.1.
- Jacob S., Michael M., Brezlin A., Laurier D., Bernier M.O. Ionizing Radiation as a Risk Factor for Cataract: what about Low-Dose Effects? // Clin. Exp. Ophthalmol. 2011. No. 1. P. 005. https://doi.org/10.4172/2155-9570.S1-005.
- Della Vecchia E., Modenese A., Loney T., Muscatello M., Paulo M.S., Rossi G., Gobba F. Risk of Cataract in Health Care Workers Exposed to Ionizing Radiation: a Systematic Review // Med. Lav. 2020. V.111, No. 4. P. 269-284. https://doi.org/10.23749/mdl.v111i4.9045.
- Kleiman N.J. Radiation Cataract // Ann. ICRP. 2012. V. 41, No. 3–4. P. 80–97. https://doi.org/10.1016/j.icrp.2012.06.018.
- Poon R., Badawy M.K. Radiation Dose and Risk to the Lens of the Eye During CT Examinations of the Brain // J. Med. Imaging Radiat. Oncol. 2019. V.63, No. 6. P. 786-794. https://doi.org/10.1111/1754-9485.12950.
- Picano E., Vano E., Domenici L., Bottai M., Thierry-Chef I. Cancer and Non-Cancer Brain and Eye Effects of Chronic Low-Dose Ionizing Radiation Exposure // BMC Cancer. 2012. No. 12. P. 157. https://doi.org/10.1186/1471-2407-12-157.
- Seals K.F., Lee E.W., Cagnon C.H., Al-Hakim R.A., Kee S.T. Radiation-Induced Cataractogenesis: a Critical Literature Review for the Interventional Radiologist // Cardiovasc. Intervent. Radiol. 2016. V.39, No. 2. P. 151-160. https://doi.org/10.1007/s00270-015-1207-z.
- Barnard S.G.R., Hamada N. Individual Response of the Ocular Lens to Ionizing Radiation // Int. J. Radiat. Biol. 2023. V.99, No. 2. P. 138-154. https://doi.org/10.1080/09553002.2022.2074166.
- Ainsbury E.A., Barnard S.G.R. Sensitivity and Latency of Ionising Radiation-Induced Cataract // Exp. Eye Res. 2021. No. 212. P. 108772. https://doi.org/10.1016/j.exer.2021.108772.
- Nakashima E., Neriishi K., Minamoto A. A reanalysis of atomic-bomb cataract data, 2000–2002: a Threshold Analysis // Health Phys. 2006. V.90, No. 2. P. 154-160. https://doi.org/10.1097/01.hp.0000175442.03596.63.
- Neriishi K., Nakashima E., Minamoto A., Fujiwara S., Akahoshi M., Mishima H.K., et al. Postoperative Cataract Cases among Atomic Bomb Survivors: Radiation Dose Response and Threshold // Radiat Res. 2007. V.168, No. 4. P. 404–408. https://doi.org/10.1667/RR0928.1.
- National Research Council, Division on Earth and Life Studies, Board on Radiation Effects Research, Committee to Assess Health Risks from Exposure to Low Levels of Ionizing Radiation. Health Risks from Exposure to Low Levels of Ionizing Radiation: BEIR VII. Phase 2. National Academies Press, 2006. 422 p.
- UNSCEAR 2019. Report to the General Assembly, with Scientific Annexes // Annex A. Evaluation of Selected Health Effects and Inference of Risk Due to Radiation Exposure. New York, 2020. P. 21-192.
- Merriam G.R., Focht E. A Clinical Study of Radiation Cataracts and the Relationship to Dose // Am. J. Roentgenol. Radium Ther. Nucl. Med. 1957. V.77, No. 5. P. 759–785.
- Lipman R.M., Tripathi B.J., Tripathi R.C. Cataracts Induced by Microwave and Ionizing Radiation // Surv. Ophthalmol. 1988. V.33, No. 3.P. 200–210. https://doi.org/10.1016/0039-6257(88)90088-4.
- Averbeck D., Salomaa S., Bouffler S., Ottolenghi A., Smyth V., Sabatier L. Progress in Low Dose Health Risk Research: Novel Effects and New Concepts in Low Dose Radiobiology // Mutat Res. 2018. No. 776. P. 46-69. https://doi.org/10.1016/j.mrrev.2018.04.001.
- Bouffler S., Ainsbury E., Gilvin P., Harrison J. Radiation-Induced Cataracts: the Health Protection Agency’s Response to the ICRP Statement on Tissue Reactions and Recommendation on the Dose Limit for the Eye Lens // J. Radiol. Prot. 2012. V.32, No. 4. P. 479-488. https://doi.org/10.1088/0952-4746/32/4/479.
- Котеров А.Н. Критерии причинности в медико-биологических дисциплинах: история, сущность и радиационный аспект. Сообщение 3. Часть 2: последние четыре критерия Хилла: использование и ограничения // Радиац. биология. Радиоэкология. 2021. Т.61. № 6. С. 563-606.
- Koterov A.N. Causal Criteria in Medical and Biological Disciplines: History, Essence, and Radiation Aspect. Report 3, Part 2: Hill’s Last Four Criteria // Biology Bulletin (Moscow). 2022. V.49, No, 11. P. 155-193. https://doi.org/10.1134/S1062359022110115.
- Azizova T.V., Hamada N., Bragin E.V., Bannikova M.V., Grigoryeva E.S. Risk of Cataract Removal Surgery in Mayak PA Workers Occupationally Exposed to Ionizing Radiation over Prolonged Periods // Radiat. Environ. Biophys. 2019. V.58, No. 2. P. 139-149. https://doi.org/10.1007/s00411-019-00787-0.
- Azizova T.V., Hamada N., Grigoryeva E.S., Bragin E.V. Risk of Various Types of Cataracts in a Cohort of Mayak Workers Following Chronic Occupational Exposure to Ionizing Radiation // Eur. J. Epidemiol. 2018. V.33. No. 12. P. 1193-1204.https://doi.org/10.1007/s10654-018-0450-4.
- Азизова Т.В., Хамада Н., Григорьева Е.С., Брагин Е.В. Риск катаракты различных типов в когорте работников, подвергшихся профессиональному хроническому облучению // Мед. радиология и радиац. безопасность. 2020. Т.65. № 4 С. 48–57
- Cochrane Handbook for Systematic Reviews of Interventions. Ed. Higgins J.P.T., James T., Chandler J., Cumpston M., Li T., Page M.J., Welch V.A. 2019. 694 p. https://doi.org/10.1002/9781119536604.
- Worgul B.V., Kundiyev Y.I., Sergiyenko N.M. Chumak, et al. Cataracts among Chernobyl Clean-up Workers: Implications Regarding Permissible Eye Exposure // Radiat. Res. 2007. V.167, No. 2. P. 233-243. https://doi.org/10.1667/rr0298.1.
- Котеров А.Н., Бирюков А.П. Дети ликвидаторов аварии на Чернобыльской атомной электростанции. I. Оценка принципиальной возможности зарегистрировать радиационные эффекты // Мед. радиология и радиац. безопасность. 2012. Т.57. № 1. С. 58-79.
- Day R., Gorin M.B., Eller A.W. Prevalence of Lens Changes in Ukrainian Children Residing Around Chernobyl // Health Phys. 1995. V.68, No. 5. P. 632–642. https://doi.org/10.1097/00004032-199505000-00002.
- Котеров А.Н., Ушенкова Л.Н., Калинина М.В., Бирюков А.П. Экологические (корреляционные) исследования в дисциплинах радиационного и нерадиационного профиля: «птица Феникс» / Под ред. Н.И. Санжаровой и В.М. Шершакова. // Cб. докл. межд научн.-практ. конф. «Радиоэкологические последствия радиационных аварий: к 35-ой годовщине аварии на ЧАЭС», Обнинск, 22-23 апреля 2021 г. Обнинск, 2021. С. 185-190.
- Shore R.E., Neriishi K., Nakashima E. Epidemiological Studies of Cataract Risk at Low to Moderate Radiation Doses: (Not) Seeing Is Believing // Radiat. Res. 2010. V.174, No. 6. P. 889–894. https://doi.org/10.1667/RR1884.1.
- Hammer G.P., Scheidemann-Wesp U., Samkange-Zeeb F., Wicke H., Neriishi K., Blettner M. Occupational Exposure to Low Doses of Ionizing Radiation and Cataract Development: a Systematic Literature Review and Perspectives on Future Studies // Radiat. Environ. Biophys. 2013. V.52, No. 3. P. 303–319. https://doi.org/10.1007/s00411-013-0477-6.
- Lian Y., Xiao J., Ji X., Guan S., Ge H., Li F. et al. Protracted Low-Dose Radiation Exposure and Cataract in a Cohort of Chinese Industry Radiographers // Occup. Environ. Med. 2015. V.72, No. 9. P. 640–647. https://doi.org/10.1136/oemed-2014-102772.
- Di Paola M., Bianchi M., Baarli J. Lens Opacification in Mice Exposed to 14-MeV Neutrons // Radiat. Res. 1978. V.73, No. 2. P. 340–350. https://doi.org/10.2307/3574825.
- UNSCEAR 2012. Report to the General Assembly, with Scientific Annexes // Annex A. Attributing Health Effects to Ionizing Radiation Exposure and Inferring Risks. New York, 2015. 86 p.
- Котеров А.Н. Критерии причинности в медико-биологических дисциплинах: история, сущность и радиационный аспект. Сообщение 3. Часть 1: первые пять критериев Хилла: использование и ограничения // Радиац. биология. Радиоэкология. 2021. Т.61. № 3. С. 300-332.
- Rothman K.J., Greenland S. Causation and Causal Inference in Epidemiology // Am. J. Public Health. 2005. V.95, No. 1. P. S144–S150. https://doi.org/10.2105/AJPH.2004.059204.
- Котеров А.Н., Ушенкова Л.Н., Бирюков А.П. Критерий Хилла «Биологическое правдоподобие». Интеграция данных из различных дисциплин в эпидемиологии и радиационной эпидемиологии // Радиац. биология. Радиоэкология. 2020. Т.60. № 5. С. 453-480.
- Koterov A.N., Ushenkova L.N., Biryukov A.P. Hill’s ‘Biological Plausibility’ Criterion: Integration of Data from Various Disciplines for Epidemiology and Radiation Epidemiology // Biology Bulletin (Moscow). 2021. V.48, No. 11. P. 1991-2014. https://doi.org/10.1134/S1062359021110054.
- Davey Smith G. Data Dredging, Bias, or Confounding. They Can all Get you into the BMJ and the Friday Papers // Brit. Med. J. 2002. V.325, No. 7378. P. 1437-1438. https://doi.org/10.1136/bmj.325.7378.1437.
- NCRP Report No. 168. Radiation Dose Management for Fluoroscopically-Guided Interventional Medical Procedures, National Council on Radiation Protection and Measurements. Bethesda, Maryland, 2011.
- Dauer L., Blakely E., Brooks A., Hoel D. Epidemiology and Mechanistic Effects of Radiation on the Lens of the Eye: Review and Scientific Appraisal of the Literature. Electric Power Research Institute. Technical Report. 3002003162. Final Report. Newburgh: NY, 2014. 142 p.
- UNSCEAR 2017. Report to the General Assembly, with Scientific Annexes // Annex A. Principles and Criteria for Ensuring the Quality of the Committee’s Reviews of Epidemiological Studies of Radiation Exposure. United Nations. New York. 2018. P. 17–64.
- Hamada N., Sato T. Cataractogenesis Following High-LET Radiation Exposure // Mutat. Res. Rev. Mutat. Res. 2016. V.770, No. Pt. B. P. 262-291. https://doi.org/10.1016/j.mrrev.2016.08.005.
- Lett J.T., Lee A.C., Cox A.B. Late Cataractogenesis in Rhesus Monkeys Irradiated with Protons and Radiogenic Cataract in Other Species // Radiat. Res. 1991. V.126, No. 2. P. 147–156. https://doi.org/10.2307/3577813.
- Wilde G., Sjostrand J. A Clinical Study of Radiation Cataract Formation in Adult Life Following Gamma Irradiation of the Lens in Early Childhood // Br. J. Ophthalmol. 1997. V.81, No. 4. P. 261–266. https://doi.org/10.1136/bjo.81.4.261.
- Arefpour A.M., Bahrami M., Haghparast A., Khoshgard K., Tabar H. A., Farshchian N. Evaluating Dose-Response of Cataract Induction in Radiotherapy of Head and Neck Cancers Patients // J. Biomed. Phys. Eng. 2021. V.11, No. 1. P. 9–16. https://doi.org/10.31661/jbpe.v0i0.834.
- Ciraj-Bjelac O., Rehani M.M., Sim K.H., Liew H.B., Vano E., Kleiman N.J. Risk for Radiation-Induced Cataract for Staff in Interventional Cardiology: Is there Reason for Concern? // Catheter Cardiovasc. Interv. 2010. V.76, No. 6. P. 826–834. https://doi.org/10.1002/ccd.22670.
- Lehmann P., Boratynski Z., Mappes T., Mousseau T.A., Moller A.P. Fitness Costs of Increased Cataract Frequency and Cumulative Radiation Dose in Natural Mammalian Populations from Chernobyl // Sci Rep. 2016. No. 6. P. 19974.
- Mikryukova L.D., Akleyev A.V. Cataract in the Chronically Exposed Residents of the Techa Riverside Villages // Radiat. Environ. Biophys. 2017. V.56, No. 4. P. 329–335. https://doi.org/10.1007/s00411-017-0702-9.
- Merriam G.R., Worgul B.V., Experimental Radiation Cataract – Its Clinical Relevance // Bull. N.Y. Acad. Med. 1983. V.59, No. 4. P. 372-392.
- Ferrufino-Ponce Z.K., Henderson B.An. Radiotherapy and Cataract Formation // Semin. Ophthalmol. 2006. V.21, No. 3. P. 171-180. https://doi.org/10.1080/08820530500351728.
- Pederson S.L., Margaret C., Puma L., Hayes J.M., Okuda K., Reilly C.M., et al. Effects of Chronic Low-Dose Radiation on Cataract Prevalence and Characterization in Wild Boar (Sus scrofa) from Fukushima, Japan // Sci. Rep. 2020. V.10, No. 1. P. 4055. https://doi.org/10.1038/s41598-020-59734-5.
- Котеров А.Н., Ушенкова Л.Н. Критерии причинности в медико-биологических дисциплинах: история, сущность и радиационный аспект. Сообщение 4. Часть 2: иерархия критериев, их критика и иные методы установления причинности // Радиац. биология. Радиоэкология. 2022. Т.62. № 4. С. 339-398.
- Christenberry K.W., Furth J. Induction of Cataracts in Mice by Slow Neutrons and X-Rays // Proc. Soc. Exper. BioI. & Med. 1951. V.77, No. 3. P. 559-560. https://doi.org/10.3181/00379727-77-18849.
- Котеров А.Н., Ушенкова Л.Н., Зубенкова Э.С., Вайнсон А.А., Бирюков А.П. Соотношение возрастов основных лабораторных животных (мышей, крыс, хомячков и собак) и человека: актуальность для проблемы возрастной радиочувствительности и анализ опубликованных данных // Мед. радиология и радиац. безопасность. 2018. Т.63. № 1. С. 5-27.
补充文件
