Assessment of the Effect of Ascorbic, Malic and Succinic Acids on Radiation-Induced Oxidative Stress in A549 Cells
- 作者: Romodin L.A.1, Moskovskij А.А.1
-
隶属关系:
- A.I. Burnazyan Federal Medical Biophysical Center
- 期: 卷 69, 编号 5 (2024)
- 页面: 21-27
- 栏目: Radiation Biology
- URL: https://medbiosci.ru/1024-6177/article/view/363944
- DOI: https://doi.org/10.33266/1024-6177-2024-69-5-21-27
- ID: 363944
如何引用文章
全文:
详细
Relevance: For modern radiobiology, the problem of finding pharmacological protection against radiation damage remains urgent. Interest in this topic does not weaken due to the high chemical toxicity of all generally recognized radioprotectors. One of the most studied drugs in this regard are substances with antioxidant activity, which is due to the ability of antioxidants to inhibit the processes of oxidative stress.
Purpose: The effect of malic, succinic and ascorbic acids on radiation-induced oxidative stress in the culture of human lung adenocarcinoma cells of the A549 line.
Material and methods: In the course of the work, the effect of solutions of malic, ascorbic and succinic acids in concentrations of 0.1, 0.5, 1 and 2 mM on the intensity of radiation-induced oxidant stress in the adsorption culture of cells of the A549 line was studied. Oxidative stress was induced by X-ray radiation at a dose of 8 Gy. The level of reactive oxygen species was estimated based on the ratio of the fluorescence intensity of the dye dichlorofluorescein to that of the dye Hoechst-33342.
Results: Under the influence of the studied substances, a statistically significant decrease in the content of reactive oxygen species in the cells was observed. The most pronounced effect is observed in samples treated with succinic acid. In non-irradiated samples in the presence of ascorbic and malic acids at a concentration of the studied substances of 100 mM, a statistically significant increase in the intensity of fluorescence is observed, which can be explained by the reduction of intracellular trivalent iron to Fe2+ under the action of these substances, which contributed to the Fenton reaction.
Conclusions: Based on the results obtained during this study, it can be assumed that malic acid, ascorbic acid and, in particular, succinic acid have some radioprotective properties. However, additional studies on other model systems, including various cell lines, are needed to confirm the presence of these properties. The results of the presented work make it possible in the future to begin the development of therapeutic schemes to alleviate the effects of radiation using the studied substances.
作者简介
L. Romodin
A.I. Burnazyan Federal Medical Biophysical Center
Email: rla2904@mail.ru
Moscow
А. Moskovskij
A.I. Burnazyan Federal Medical Biophysical Center
Email: rla2904@mail.ru
Moscow
参考
- Рождественский Л.М. Проблемы разработки отечественных противолучевых средств в кризисный период: поиск актуальных направлений развития // Радиационная биология. Радиоэкология. 2020. Т.60. №3. С.279–290. doi: 10.31857/S086980312003011X.
- Singh V.K., Seed T.M. The Efficacy and Safety of Amifostine for the Acute Radiation Syndrome // Expert Opinion on Drug Safety. 2019. Vol.18. No.11. P.1077–1090. doi: 10.1080/14740338.2019.1666104.
- Васин М.В. Классификация противолучевых средств как отражение современного состояния и перспективы развития радиационной фармакологии // Радиационная биология. Радиоэкология. 2013. Т.53. №5. С.459–467. doi: 10.7868/S0869803113050160.
- Бурлакова Е.Б., Аткарская М.В., Фаткуллина Л.Д., Андреев С.Г. Радиационно-индуцированные изменения структурного состояния мембран клеток крови человека // Радиационная биология. Радиоэкология. 2014. Т.54. №2. С.162–168. doi: 10.7868/S0869803114020040.
- Кузин А.М. Структурно-метаболическая теория в радиобиологии. М.: Наука, 1986. 282 с.
- Raj S., Manchanda R., Bhandari M., Alam M.S. Review on Natural Bioactive Products as Radioprotective Therapeutics: Present and Past Perspective // Current Pharmaceutical Biotechnology. 2022. Vol.23. No.14. P.1721–1738. doi: 10.2174/1389201023666220110104645.
- Gonzalez E., Cruces M.P., Pimentel E., Sanchez P. Evidence that the Radioprotector Effect of Ascorbic Acid Depends on the Radiation Dose Rate // Environmental Toxicology and Pharmacology. 2018. Vol.62. P.210–214. doi: 10.1016/j.etap.2018.07.015
- Журавлёв А.И., Зубкова С.М. Антиоксиданты. Свободнорадикальная патология, старение. Второе издание, исправленное и дополненное. М.: Белые альвы, 2014. 304 с.
- Владимиров Ю.А., Арчаков А.И. Перекисное окисление липидов в биологических мембранах. М.: Наука, 1972. 252 с.
- Mousavi A., Pourakbar L., Siavash Moghaddam S. Effects of Malic Acid and EDTA on Oxidative Stress and Antioxidant Enzymes of Okra (Abelmoschus Esculentus L.) Exposed to Cadmium Stress // Ecotoxicology and Environmental Safety. 2022. Vol.248. P.114320. doi: 10.1016/j.ecoenv.2022.114320
- Zeng X., Wu J., Wu Q., Zhang J. L-Malate Enhances the Gene Expression of Carried Proteins and Antioxidant Enzymes in Liver of Aged Rats // Physiological Research. 2015. Vol.64. No.1. P. 71–78. doi: 10.33549/physiolres.932739
- Wegrzyn A.B., Stolle S., Rienksma R.A., Martins Dos Santos V.A.P., Bakker B.M., Suarez-Diez M. Cofactors Revisited – Predicting the Impact of Flavoprotein-Related Diseases on a Genome Scale // Biochimica et Biophysica Acta. Molecular Basis of Disease. 2019. Vol.1865. No.2. P.360–370. doi: 10.1016/j.bbadis.2018.10.021
- Domingo J.L., Gomez M., Llobet J. M., Corbella J. Chelating Agents in the Treatment of Acute Vanadyl Sulphate Intoxication in Mice // Toxicology. 1990. Vol. 62. No.2. P.203–211. doi: 10.1016/0300-483x(90)90110-3
- Силантьева Т.А. Многофакторное влияние аскорбиновой кислоты на процесс репаративного остеогенеза // Современные проблемы науки и образования. 2023. №4. C.157. doi: 10.17513/spno.32901
- Kim J., Stolarski A., Zhang Q., Wee K., Remick D. Hydrocortisone, Ascorbic Acid, and Thiamine Therapy Decreace Renal Oxidative Stress and Acute Kidney Injury in Murine Sepsis // Shock. 2022. Vol.58. No.5. P.426–433. doi: 10.1097/SHK.0000000000001995
- Spoelstra-de Man A.M.E., Elbers, P.W.G., Oudemans-Van Straaten H.M. Vitamin C: Should we Supplement? // Current Opinion in Critical Care. 2018. Vol.24. No.4. Р.248–255. doi: 10.1097/MCC.0000000000000510
- Закирова Г.Ш., Ишмухаметов К. Т., Саитов В. Р., Кадиков И. Р. Эффективность применения солей фумаровой и янтарной кислот при комбинированном поражении кроликов // Вестник Марийского Государственного Университета. 2022. Т.8. №3. С.256–-263. doi: 10.30914/2411-9687-2022-8-3-256-263
- Zarubina I.V., Lukk M.V., Shabanov P.D. Antihypoxic and Antioxidant Effects of Exogenous Succinic Acid and Aminothiol Succinate-Containing Antihypoxants // Bulletin of Experimental Biology and Medicine. 2012. Vol.153. No.3. P.336–339. doi: 10.1007/s10517-012-1709-5
- Мороз Н.Е. Биохимия: формулы, таблицы, схемы. Калининград: Балтийский федеральный университет имени Имануила Канта, 2023. 155 с.
- Маркова Е.О., Новиков В.Е., Парфенов Э.А., Пожилова Е.В. Комплексное соединение аскорбиновой кислоты с антигипоксантными и антиоксидантными свойствами // Вестник Смоленской государственной медицинской академии. 2013. Т.12. №1. С.27–32.
- Frei B., England, L., Ames, B.N. Ascorbate is an Outstanding Antioxidant in Human Blood Plasma // Proceedings of the National Academy of Sciences. 1989. Vol.86. No.16. P.6377–6381. doi: 10.1073/pnas.86.16.6377
- Tian J., Peehl Donna M., Knox Susan J. Metalloporphyrin Synergizes with Ascorbic Acid to Inhibit Cancer Cell Growth Through Fenton Chemistry // Cancer Biotherapy and Radiopharmaceuticals. 2010. Vol.25. No.4. P.439–448. doi: 10.1089/cbr.2009.0756
- Иванова И.П., Трофимова С.В., Пискарёв И.М. Хемилюминесценция, индуцированная реакцией Фентона, – математическое моделирование процесса; особенности, параметры и условия применения для биомедицинских исследований // Современные технологии в медицине. 2014. Т.6. №4. С.14–25.
- Лутакин А.С., Ешкина, С. В., Осмоловская, Н. Г. Влияние экзогенных антиоксидантов на генерацию супероксидного анион-радикала в листьях огурца при стрессовом действии охлаждения и ионов меди // Вестник Санкт-Петербургского Университета. Серия 3. Биология. 2013. №4. С.65–73.
- Шарова Е.И., Медведев, С. С., Демидчик, В. В. Аскорбат в апопласте: метаболизм и функции // Физиология растений. 2020. Т.67. №2. С.115–129. doi: 10.31857/S0015330320020153
- Green M., Fry S. Apoplastic Degradation of Ascorbate: Novel Enzymes and Metabolites Permeating the Plant Cell Wall // Plant Biosystems – An International Journal Dealing with all Aspects of Plant Biology. 2005. Vol.139. No.1. P.2–7. doi: 10.1080/11263500500056849
- Zhang S., Chen H., He D., He X., Yan Y., Wu K., Wei H. Effects of Exogenous Organic Acids on Cd Tolerance Mechanism of Salix Variegata Franch. Under Cd Stress // Frontiers in Plant Science. 2020. Vol.11. P.594352. doi: 10.3389/fpls.2020.594352
- Chen M., Zhao Y., Li S., Chang Z., Liu H., Zhang D., Wang S., Zhang X., Wang J. Maternal Malic Acid May Ameliorate Oxidative Stress and Inflammation in Sows through Modulating Gut Microbiota and Host Metabolic Profiles during Late Pregnancy // Antioxidants & Redox Signaling. 2024. Vol.13. No.2. P.253. doi: 10.3390/antiox13020253
补充文件
