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Abstract. Free internal waves in a uniformly stratified fluid are considered in the Boussinesq 

approximation with regard for the Earth's rotation. It is shown that the dispersion relation, derived 

with taking into account the horizontal component of the angular velocity of the Earth's rotation at 

constant wave frequency, is reduced to the canonical equation for second-order curves in the plane 

of horizontal wave numbers. If the wave frequency is higher than the inertial frequency and less 

than the Brunt-Väisälä frequency, the frequency isolines are ellipses. If the wave frequency is 

higher than the buoyancy frequency, then the frequency isolines are hyperbolas; and if the wave 

frequency is equal to the Brunt-Väisälä frequency, then the isolines are two straight lines parallel 

the direction to the east. The vertical wave momentum fluxes are obtained as functions of the 

direction of wave propagation. It is shown that the fluxes are maximum in absolute value when 

the wave propagates to the north or to the south. A comparison of the vertical momentum fluxes 

of internal and sub-inertial waves at the same length and the maximum wave amplitude is carried 

out. It is shown that the vertical momentum flux of sub-inertial waves is higher than that of internal 

waves and weakens with weakening of stratification. 
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INTRODUCTION 

The diurnal rotation of the Earth affects ocean dynamics. Currents and internal waves are 

subject to the Coriolis force. Usually, only the component normal to the Earth's surface of the 
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angular velocity of its rotation is taken into account in determining the Coriolis force. Such an 

approximation is called the traditional approximation [1-7]. In the non-traditional approximation, 

i.e., when the horizontal component of the angular velocity of the Earth's rotation is taken into 

account, a series of new effects arise, which are noticeably manifested at weak stratification. With 

respect to the dispersion characteristics of internal waves, this issue is well enough developed [1-

7]. At strong stratification, when the buoyancy frequency is much larger than the inertial 

frequency, the rejection of the traditional approximation practically does not affect the dispersion 

curves. At weak stratification, when the horizontal component of the Earth's angular velocity is 

taken into account, the existence of internal waves with a frequency less than the inertial frequency 

is possibly possible; they are called subinertial internal waves. The frequency range of these waves 

is wider the smaller the buoyancy frequency. The upper quasi-homogeneous and bottom weakly 

stratified layers of the sea are the waveguides for these waves. When the frequency of a subinertial 

wave is reduced to an extremely low frequency, the scale of the wave tends to zero, indicating the 

possibility of energy dissipation on small scales, for example, during the propagation of subinertial 

internal waves on horizontally inhomogeneous currents or due to the influence of theβ -effect [1, 

6, 8]. In this work, we will consider the effect of the unconventional approximation on vertical 

momentum transfer by internal waves. Previously, this issue was considered in the traditional 

approximation in the presence of shear currents [9-11]. It was shown that if the component of the 

flow velocity normal to the direction of propagation of a normal modes wave depends on the 

vertical coordinate, the vertical wave momentum fluxes are different from zero when the Earth's 

rotation is taken into account. Internal waves propagate often in the form of wave packets [12, 13]. 

Nonlinear effects in the propagation of internal wave packets manifest themselves in the generation 

of mean currents on the time scale of the wave [14, 15]. The vertical component of the velocity of 

this induced current at the leading and trailing fronts of the packet has different signs and, as a 

result, there is no vertical transport [14]. However, there is horizontal transport, which can manifest 

itself in the transport of suspended sediment and sedimentary material from the shelf to the deep 

sea. 

        According to existing concepts, small-scale turbulence is responsible for vertical exchange. 

Internal waves and shear currents are the source of energy supply for small-scale turbulence in the 

stratified ocean strata [16-19]. But not only small-scale turbulence is responsible for vertical 

exchange. When turbulent toughness and diffusion are taken into account, internal waves are 

damped and the vertical wave fluxes of heat, salt, and momentum are different from zero and 

contribute to vertical exchange [20, 21]. However, even in the absence of turbulent toughness and 

diffusion, the vertical wave fluxes of momentum when Earth rotation is taken into account in the 

traditional approximation are different from zero in the presence of currents with vertical velocity 
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strike-slip fault [9-11]. It is of interest to study the effect of rejection of the traditional 

approximation on vertical momentum transport by internal waves for strong and weak 

stratification, when subinertial internal waves play a significant role.  

1. PROBLEM STATEMENT 

 Free internal waves in a boundless vertically stratified basin of constant depth are considered, 

taking into account the contribution of the horizontal component of the Earth's angular velocity to 

the Coriolis force. The dispersion relation is found in the linear approximation and the boundary 

value problem for the amplitude of the vertical velocity of internal shafts at constant buoyancy 

frequency is solved. Secondly, the vertical wave momentum fluxes are found in the second order 

by the wave amplitude. 

The system of equations of hydrodynamics in the Boussinesq approximation [4, 22] for wave 

perturbations has the form: 

 

0

1
c

Du Pf w fvDt x
∂

+ − = −
ρ ∂

                                        (1.1) 

0

1Dv PfuDt y
∂

+ = −
ρ ∂

                                                    (1.2) 

0 0

1
c

Dw P gf uDt z
∂ ρ

− = − −
ρ ∂ ρ

                                      (1.3) 

0u v w
x y z
∂ ∂ ∂

+ + =
∂ ∂ ∂

                                                        (1.4) 

0 0D wDt z
∂ρρ

+ =
∂

                                                           (1.5) 

2 sin , 2 coscf f= Ω ϕ = Ω ϕ 

where Ω - angular velocity of Earth rotation, ϕ - latitude, f  - Coriolis parameter - inertial frequency; 

axis x is directed eastward, axis y northward, axis z is directed vertically upward; , ,u v w - 

respectively two horizontal and vertical components of wave perturbations of flow velocity along 

these axes, P andρ - wave perturbations of pressure and density, ρ0( )z  - unperturbed mean density,

ρ0 - its depth-averaged value, constant value in the Boussinesq approximation; the action of 

operator D Dt  is revealed by formula D u v wDt t x y z
∂ ∂ ∂ ∂

= + + +
∂ ∂ ∂ ∂

. 

Boundary conditions at the sea surface ( 0z =  ) are the "hard cap" condition that filters out 

internal waves from surface waves [4, 22]: (0) 0.w =  Boundary conditions at the bottom are the 

"no-flow" condition: ( ) 0,w H− =  H - Sea depth. 

2. LINEAR APPROXIMATION 

Solutions of the system (1.1)-(1.5) in the linear approximation are sought in the form:  

10( ) e c.c.iu u z A θ= + ,     10( ) e c.c.iv v z A θ= + ,        10( ) e c.c.iw w z A θ= +                      

10( ) e c.c.iP P z A θ= + ,   10( ) e c.c.iz A θρ = ρ + ,                         (2.1) 
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where c.c. - complex-conjugate summands, A - amplitude multiplier; θ - wave phase, 

kx ly tθ = + − ω ; ,k l  - horizontal wave numbers, projections of the wave vector hk


 on the ,x y axes, 

respectively; ω - wave frequency.  

Substituting (2.1) into the system (1.1)-(1.5) we find the relationship of amplitude functions

10 10 10 10, , ,u v Pρ  with 10w  and the equation for the 10w  
 

( )

( )
210

10
10 2 2

c
dw

ik fl if l wdzu
k l

ω − −
=

ω +
                                               (2.2) 

( )

( )
10

10
10 2 2

c
dw

fk il l if lkwdzv
k l

+ ω +
=

ω +
                                              (2.3) 

( ) ( )

( )
2 210

1010
2 20

c
dw

i f f ik fl wP dz
k l

ω − + ω +
=

ρ ω +
 

0
10 10

di w dz
ρ

ρ = −
ω

 

The function 10w  satisfies the equation [3, 4, 6] 

2
10 10

102 ( ) ( ) 0d w dw
a z b z wdzdz

+ + =

   
                                    (2.4) 

where 2 2
2( ) cilff

a z
f

= −
ω −

, ( )( )2 2 2 2 2 2

2 2( )
cN k l f l

b z
f

− ω + +
=

ω −
, 

2 0

0

dgN dz
ρ

= −
ρ

 - the square of the Brent-Wäisälä frequency. 

Boundary conditions for 10w  

10 10(0) ( ) 0w w H= − = .                                               (2.5) 

 

3. MOMENTUM WAVE STREAMS 

        It is of interest to find the projections of wave perturbations of the flow velocity to the 

directions along and across the horizontal wave vector hk  . Obviously ( )2 2 2
hk k l= +  . Let α be the 

angle of the wave vector hk  with the axis x. A positive value of the angle α corresponds to a 

counterclockwise rotation of the axis x to the vector hk . Let us introduce a coordinate system 

rotated in the horizontal plane by this angle α ', 'x y  . The axis 'x  is directed along the vector hk , the 

axis 'y  is perpendicular to it.  Then the projections of wave perturbations of the flow velocity on 

the ', 'x y  axes are as follows: 
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' cos sinu u v= α+ α,               ' cos - sinv v u= α α 

 

From the representation of solutions for ,u v  as (2.1), it follows that ', 'u v  can be represented as 

1' ' ( ) e c.c.iu u z A θ= + ,     1' ' ( ) e c.c.iv v z A θ= +                                  (3.1) 

 

where 1 1' , 'u v  are determined by formulas: 

1 10 10' cos sinu u v= α+ α,               1 10 10' cos - sinv v u= α α                            (3.2) 

 

From relations (3.1), (3.2) and (2.2). (2.3) we find the vertical wave fluxes of momentum 

 
*

2 * 10 10
10 10'

hk
dw dwiu w A w wdz dz

 
 
 

= −                                      (3.3)  

( )*
10 102'

h

f
k

d w w
v w A dzω

=                                              (3.4) 

 

Here the line at the top means averaging over the period of the wave. The vertical wave flux of 

momentum 'v w is different from zero when the Earth's rotation is taken into account. The boundary 

value problem (2.4), (2.5) has complex coefficients at 0l ≠  and complex solutions. Therefore, the 

flux 'u w (3.3) is not zero when the horizontal component of the Earth's angular velocity is taken 

into account. In the traditional approximation, this flux shaft is zero because equation (2.4) at 0cf =  

has real coefficients and the solution of the boundary value problem (2.4), (2.5) is a real function. 

At 0;α = π the wave number 0l =  and vertical wave momentum flux 'u w is zero in the non-

traditional approximation, since equation (2.4) has valid coefficients and valid solutions and 

coincides with the equation of the traditional approximation. 

The normalizing multiplierA is found from the known value of the maximum amplitude of 

vertical displacements maxζ . For this purpose, we express the vertical displacement ζ, using the 

relation: ζ/d dt w=  

 

10 exp( ) c.c.iw
A ily i tζ = − ω +

ω
 

Hence  

max

102max
A

w
ζ

=
ω

.                                           (3.5) 
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4. CALCULATION RESULTS 

        Equation (2.4) admits an exact analytical solution at constant Brent-Väisälä frequency. Then 

equation (2.4) is simplified to the form: 
2

10 10
0 0 102 2 0d w dw

ia b wdzdz
+ + =                                            (4.1)  

 

where 0 2 2
сlff

a
f

= −
ω −

, ( )
2

2 2 2 2
0 2 2 sinh

c
k

b N f
f

= − ω + α
ω −

                                                (4.2)   

The solution of the boundary value problem (4.1), (2.5) has the form: 

 

( )0 2
10 0 0( ) sinia zw z e z a b− ⋅= ⋅ +                                           (4.3) 

 

The dispersion equation resulting from the boundary conditions (2.5) is valid at: z H= −  
2
0 0H a b n+ = π  

where n is a positive integer.  

Hence.  
2

2
0 0

na b H
π + =   

                                                       (4.4) 

 

After substituting expressions (4.2) for 0 0,a b  into (4.4) we obtain 

 

( )
22 2 2 2 2

2 2 2 2
2 2 22 2

sin sinc h h
c

f f k k nN f Hff

α π  + − ω + α =     ω −ω −
                     (4.5) 

 

Hence the dispersion relation [3, 4, 6]:  

 

( )
( )( )

2 22 2

2
2 2 2 2 2 2 2sin

h
c

n fH
k

N f f

π  ω −  
=

− ω ω − + ω α
                                      (4.6) 

 
Here n is the mode number. It is easy to see that in the traditional approximation at 0cf =  the 

dispersion relation (4.6) transforms into the known relation at a constant Brent-Väisälä frequency 

[4, 5, 22]: 

 
2

2 2 2

2
2

2

h

h

nN k f H

nk H

π +   
ω =

π +   

,  
( )

( )

2
2 2

2
2 2h

n fH
k

N

π  ω −  
=

− ω
                      (4.7) 
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From the positivity condition 2
hk  (4.7) follows the inequality 2 2 2f N< ω <  at N f> , i.e., for 

internal shafts in the traditional approximation, the wave frequency satisfies the inequality 

f N< ω < .  

When the horizontal component of the Earth's angular velocity is taken into account, the condition 

of positivity 2
hk  (4.6) leads to the inequality for the frequency ω [3, 4, 6]: 

2 2 2
2 1ω < ω < ω                                                                (4.8) 

where ω ω1 2,  are determined by formulas [3, 4, 6]: 
 

( ) ( )22 2 2 2 2 2 2 4 4 2 2 2 2
1,2

1 sin sin 2 sin2 c c cN f f N f f f N f
 

ω = + + α ± − + α + α + 
 

            (4.9) 

 

It should be noted the validity of the following inequalities [3]: 

 

( ) ( )2 2 2 2 2 2
1 2max , ; min ,N f N fω > ω <                                     (4.10) 

 

It is not difficult to see that the dispersion equation (4.6) at a fixed wave frequencyω is equivalent 

to the canonical equation (4.11) for second-order curves in the plane of horizontal wave numbers 

,k l   (the corresponding proof is given in the Appendix): 

 
2 2

2 2 1k l
a b

+ =                                                           (4.11) 

where  

 

( )
( )

2
2 2

2
2 2

n fH
a

N

π  ω −  
=

− ω
;             

( )
( )( )

2 22 2

2
2 2 2 2 2 2

c

n fH
b

N f f

π  ω −  
=

− ω ω − + ω
                (4.12) 

 

Equation (4.11) at 2 0a >  is the equation of an ellipse, since at this and 2 0b > , a is the major semi-

axis of the ellipse, b is the minor semi-axis. When 2 0a <   and 2 0b >  , equation (4.11) is the equation 

of a hyperbola. If 21 0a =  (at ω )N= , equation (4.11) becomes the equation of two lines parallel to 

the axis k: 
 

( )2 2

c

n N f
l

HNf

π −
= ±                                                      (4.13) 
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     Consider the case >N f , fω > , corresponding to internal waves. At f N<ω <  equation (4.11) is 

the equation of an ellipse, at Nω >  and 2 0b >  equation (4.11) is the equation of a hyperbola. The 

solution of the inequality 2 0b >  has the form:  

 
2 2 2
2* 1*ω < ω < ω                                                      (4.14) 

 

where ω ω2 2
2* 1*,  are determined by formulas: 

( ) ( )22 2 2 2 2 2 4 2 2 2
1,2*

1 22 c c cN f f N f f f N f
 

ω = + + ± − + + + 
 

                  (4.15) 

 

It is not difficult to see that inequality (4.14) coincides with inequality (4.8) at 2sin 1α = , with
2 2
2* 1*,ω ω  satisfying conditions (4.10), i.e., the conditions are satisfied: 

 
2 2 2 2
1* 2*N fω > ω <                                              (4.16) 

 

Hence the inequality 2 0b >  is satisfied at 

 
2 2 2

1*N < ω < ω                                                      (4.17) 

 

Thus, when inequality (4.17) is satisfied, the frequency isolines in the plane of horizontal wave 

numbers are hyperbolas. 

Further analysis of wave frequency isolines in the plane of horizontal wave numbers will be 

carried out for internal waves of the firstly mode ( 1)n =  with frequency ω, satisfying the condition

1*f < ω < ω  for three types of stratification: 1 3N =  cycle/h - strong stratification; 2 2.5N f=  - weak 

stratification; 3 1.5N f=  - very weak stratification. Sea depth 200H =  m, latitude 44.8ϕ = ° north 

latitude. In the traditional approximation, the wave frequency isolines in the plane of horizontal 

wave numbers are circles, the square of the radius of which is determined by formula (4.7). Figure 

1 shows the wave frequency isolines in the plane of horizontal wave numbers at strong 

stratification when the horizontal component of the Earth's angular velocity of rotation is taken 

into account. In the case of strong stratification at 10.98f N< ω <  in Fig. 1, the ellipses turn into 

circles, almost coinciding with circles in the traditional approximation. The frequency 10.98Nω=  

corresponds to a wavelength of 57.6 m, for longer wavelengths the frequency isolines are circles. 

In the frequency interval 1 10.98N N≤ω<  frequency isolines are ellipses.  
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At 1Nω =  the isolines in Figure 1 are straight lines 
( )2 2

1

1 c

N f
l

HN f

π −
= ±  , at 1 1*N < ω < ω  the isolines 

are hyperbolas.  

Figure 2 shows the wave frequency isolines in the plane of horizontal wave numbers at weak 

stratification when . 2 2.5N f=  

The closed lines in Fig. 2 are ellipses. At these frequencies at strong stratification the 

frequency isolines are circles. At 2Nω =  the isolines in Fig. 2 are straight lines (4.13), at 2 1*N < ω < ω  

the isolines are hyperbolas.  

Fig. 3 shows the wave frequency isolines in the plane of horizontal wave numbers at very 

weak stratification when 2 2.5N f= . 

In general, the picture of frequency isolines at very weak stratification is similar to the same picture 

for weak stratification, but in the vicinity of the origin, the ellipses at very weak stratification are 

more flattened to the abscissa axis than at weak stratification, i.e., the anisotropy of closed 

frequency isolines increases with weakening of stratification. Note that at sin 0α =  the dispersion 

relation (4.6) transforms into the relation (4.7) in the traditional approximation, and the major 

semi-axis of the ellipse a in (4.12) is equal to the radius hk  of the circle of the frequency isoline in 

the traditional approximation, i.e. waves running to the east or to the west do not experience any 

influence on the variance from taking into account the horizontal component of the Earth's angular 

velocity. But the influence is maximized for waves running north or south.  

It should be noted that the solution (4.3) of the boundary value problem (4.1), (2.5) using 

(4.4) can be represented in the form:  

0
10( ) sinia z nzw z e H

− ⋅ π = ⋅   
                                          (4.18) 

 

(Hence the vertical wave momentum fluxes) ((3.3), (3.4) () are of the form:) 

 

2 2
2 2 sin sin' 2 сf f nz

Hf
u w A ⋅ π ⋅ α ⋅   ω −

= − ,                                     (4.19)  

2
2sin'

h

f n nz
k H H

A
v w π π 

 ω  
= .                                             (4.20) 

 

Calculations of the vertical wave fluxes of momentum (4.19) and (4.20) at internal waves of 

the first mode with the maximum amplitude max 2ζ =  m are performed for the three considered 

types of stratification. In Fig. 4 a presents the profiles of the vertical pulse flux 'u w (4.19) at strong 

stratification for first mode internal waves with frequency 10.8 N⋅  for four values of angle α:

1 2 3 40; / 6; / 3; / 2α = α = π α = π α = π  . With increasing angleα the pulse flux increases in modulus 
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and reaches its maximum value at α π4 / 2=  . The pulse flux at ( 1, 2, 3, 4)i iα= π−α =  coincide with 

the pulse fluxes at iα = α . At negative angles iα = − α  the sign of the pulse flux 'u w is reversed.  

In the traditional approximation, the momentum flux 'u w (4.19) is zero, since 0cf = . 

The vertical wave flux of the pulse 'v w (4.20) in Fig. 4 b for the wave frequency 10.8 N⋅  at 

strong stratification does not depend practically on the angleα and coincides with the flux of the 

traditional approximation.  

Fig. 5 shows the vertical wave flux profiles of the pulse at weak stratification ( 2 2.5N f=  ) 

for the first mode wave with frequency 1.4 fω =  with maximum amplitude max 2ζ =  m.  

        The dependence of the vertical pulse wave fluxes on the angleα in Fig. 5a essentially repeats 

the same dependence as in Fig. 4a, only the magnitudes of the fluxes are modulo higher at the 

same wave amplitude. The vertical wave flux of the pulse 'v w in Fig. 5b at weak stratification 

already depends on the angle, reaches its maximum modulo value at π4 / 2α = ±   and coincides with 

the flux of the conventional approximation at 0,α = π. The momentum flux at 

( 1, 2, 3, 4)i iα= π−α =  coincide with the momentum flux at iα = α . When the sign of the angle α 

changes, the momentum flux 'v w does not change. The momentum flux 'v w  at weak stratification 

is weaker than the flux at strong stratification. 

Fig. 6 shows the vertical wave flux profiles of the pulse at very weak stratification ( 3 1.5N f=  

) for the first mode wave with frequency 1.4 fω =  with maximum amplitude max 2ζ =  m.  

        The momentum flows in Fig. 6 qualitatively repeat the flows in Fig. 5, only the angle 

dependence is stronger. The momentum fluxes of 'v w in Fig. 6b is smaller modulo the fluxes in 

Fig. 5b, while the 'u w momentum fluxes in Fig. 5a are identical to the fluxes in Fig. 6a. This is 

explained by the fact that the expression (4.19) for the 'u w momentum flux does not include the 

horizontal wave number hk , only the frequency, and it is the same for weak and very weak 

stratification, 1.4 fω = , the normalizing multiplier (3.5) is also the same. It should be noted that 

the maximum modulo value of the vertical wave momentum fluxes on the closed frequency isoline 

is reached at 2α = ±π , i.e., when the wave propagates north or south. In the traditional 

approximation, the momentum fluxes do not depend on the direction of wave propagation. 

      To solve the dispersion equation (4.6) with respect to the frequency of the wave we use 

equation (4.5): 

( )
22 2 2 2 2

2 2 2 2 2 2
2 2 22 2

sin sinc h h
c

f f k k nN f f f Hff

α π  + − − ω + + α =     ω −ω −
 

 
Hence. 
 

( )
22 2 2 2 2

2 2 2 2 2
2 2 22 2

sin sinc h h
h c

f f k k nk N f f Hff

α π  − + − + α =     ω −ω −
                (4.21) 
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In equation (4.21) it is convenient to make a substitution: 

 

2 2
1R

f
=
ω −

 

 

From equation (4.21) follows the quadratic equation for R: 

 

( )
2

2 2 2 2 2 2 2 2sin sin 1 0c c
h

nf f R R N f f k H
π 

α ⋅ + − + α − − =  
                     (4.22) 

 

After the solution of the quadratic equation (4.22) is found ω2: 

 

( ) ( )

2 2 2
2 2

222 2 2 2 2 2 2 2 2 2 2

2 sin

sin sin 4 sin 1

c

c c c
h

f f
f

nN f f N f f f f k H

α
ω = +

 π 
− − + α ± − + α + α +     

 (4.23) 

The positive sign before the square root in (4.23) corresponds to internal waves, which have 

1f < ω < ω , the negative sign corresponds to subinertial waves, which have 2 fω < ω <  [1, 3, 4, 6].  

       Fig. 7 shows the dispersion curves of the first two modes of internal waves and subinertial 

waves propagating northward for the three stratification types considered. In Fig. 7a at strong 

stratification, the dispersion curves of the subinertial waves degenerate into a straight line 

corresponding to a frequency lower than the inertial frequency by the value 82 10−⋅  rad/s. The 

detailed behavior of the dispersion curves of subinertial waves in this case in the vicinity of the 

inertial frequency at small wave numbers is revealed by Fig. 7b, which shows the dependence of 

the difference fω −  on the wave number. At 0l →  the difference 0fω − →  , remains negative. 

At weak stratification in Fig. 7c the degeneracy is removed and the dispersion curves of the first 

and second modes of the subinertial waves are already distinguishable. They are even better 

distinguishable at very weak stratification in Fig. 7г. 

       It is of interest to compare the vertical wave momentum fluxes of internal and subinertial 

waves of the first mode propagating northward with the same length 200λ =  m and maximum 

amplitude max 2ζ =  m for the three types of stratification considered. Fig. 8 shows the vertical 

momentum flux profiles 'u w  for internal (1) and subinertial (2) waves for strong (a), weak (b), 

and very weak stratification (c).  

Note the very high vertical momentum flux of the subinertial wave at strong stratification 

in Fig. 8a, which is on the order of magnitude comparable or higher than the typical turbulent 

vertical momentum flux. In contrast, the internal wave in Fig. 8a has a weak flux. At the weak 
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stratification in Fig. 8b, the vertical momentum flux of the subinertial wave is significantly 

weaker, and in contrast, the internal wave has stronger flux. Nevertheless, the flux of the 

subinertial wave is modulo higher than that of the internal wave. The same trend holds for the 

very weak stratification in Fig. 8c. There is a further weakening of the momentum flux at the 

subinertial wave, while the flux at the internal wave is enhanced (Fig. 8d). Lines 1, 2, and 3 in 

Fig. 8d correspond to strong, weak, and very weak stratification. 

     A comparison of the vertical wave pulse 'v w of the internal and subinertial waves of the first 

mode with wavelength λ 200=  m and maximum amplitude max 2ζ =  m for strong (a), weak (b), 

and very weak (c) stratification is shown in Fig. 9. Everywhere, the vertical flux of the 'v w  impulse 

of the internal wave exceeds in modulus the corresponding flux of the subinertial wave, with the 

strong stratification in Fig. 9a showing the strongest difference. A general trend of decreasing 'v w  

momentum flux with weakening stratification is present. Fig. 9d. shows the vertical wave flux 

profiles of momentum flux 'v w  at the subinertial wave for the three stratification types considered. 

Lines 1, 2, and 3 in Fig. 9g correspond to strong, weak, and very weak stratification. Stratification 

affects this momentum flux at the subinertial wave more weakly than the same flux at the internal 

wave. 

CONCLUSION 

The equation for the amplitude of the vertical velocity of internal waves when the horizontal 

component of the Earth's angular velocity is taken into account has a complex coefficient at the 

first derivative; in the traditional approximation, it is zero. The eigenfunction of internal waves in 

the non-traditional approximation is complex, although the wave frequency is real. It is shown 

that the dispersion relation at constant wave frequency reduces to the canonical equation for 

secondly order curves in the plane of horizontal wave numbers. If the internal wave frequency is 

greater than the inertial wave frequency but less than the buoyancy frequency, the frequency 

isolines are ellipses; if the frequency is greater than the buoyancy frequency but less than the 

maximum possibly frequency, the frequency isolines are hyperbolas. If the frequency of the wave 

is equal to the buoyancy frequency, the frequency isolines are straight lines parallel to the eastward 

direction. In the traditional approximation, ellipses become circles with radius equal to the major 

semi-axis of the ellipse, and there are no straight lines or hyperbolas. The influence of the 

unconventional approximation on the dispersion curves is the stronger the weaker the 

stratification. 

The vertical wave impulse flux in absolute value in the traditional approximation does not 

depend on the direction of wave propagation. It is obtained that in the non-traditional 

approximation it depends on the direction of wave propagation, and the effect is maximum when 

the wave propagates northward or southward. Then there is a vertical momentum transfer for the 
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two components of the wave perturbations of the flow velocity along and across the wave 

propagation direction. Whereas in the traditional approximation, vertical momentum transfer is 

present only for the velocity component transverse to the direction of wave propagation. It is 

shown for weak and very weak stratification that in the non-traditional approximation this 

momentum flux increases in modulus with increasing angle of the wave vector with the eastward 

direction and reaches its maximum value when the wave propagates northward (or southward). 

When propagating westward or eastward, it is equal to the flux of the conventional approximation. 

The effect increases with weakening of stratification, but for strong stratification it is absent and 

this momentum flux is equal to the flux of the traditional approximation. 
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APPENDIX 
 

The dispersion relation (4.6) has the form 

  

( )
( )( )

ω

ω ω ω

2 22 2

2
2 2 2 2 2 2 2sin

h
c

n fH
k

N f f

π  −  
=

− − + α
                                         (P1) 

 

It is not difficult to show that equation (P1) at constant wave frequency is equivalent to the 

canonical equation for second order curves in the plane of horizontal wave ,k l   numbers of the 

form 

 
2 2

2 2 1k l
a b

+ =                                                      (P2) 

where  

( )
( )

ω

ω

2
2 2

2
2 2

n fH
a

N

π  −  
=

−
;

( )
( )( )

ω

ω ω ω

2 22 2

2
2 2 2 2 2 2

c

n fH
b

N f f

π  −  
=

− − +
             (P3) 

 

Indeed, after substituting 2a  and 2b  (P3) into (P2), we shaft 

( )
( )

( )( )
( )

ω ω ωω

ω ω

2 2 2 2 2 2 22 2 2

2 2 22 2 2 2
1

cl N f fk N

n nf fH H

 − − +−  + =
π π   − −      

                         (P4) 

Multiply both parts of (P4) by the denominator of the secondly summand in the left-hand side of 

the equation 

( )( ) ( )( ) ( )ω ω ω ω ω ω
2 22 2 2 2 2 2 2 2 2 2 2 2 2 2

c
nk N f l N f f fH
π  − − + − − + = −    

 

 

Hence. 

( )( )( ) ( )ω ω ω ω
2 22 2 2 2 2 2 2 2 2 2 2

c
nk l N f l f fH
π + − − + = −  

                         (P5) 

 

Given that ( )2 2 2
hk k l= + , 2 2 2sinhl k= α, equation (P5) is transformed to the form 

( )( ) ( )ω ω ω ω
2 22 2 2 2 2 2 2 2 2 2sinh c

nk N f f fH
π  − − + α = −    

 

Hence. 
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( )
( )( )

ω

ω ω ω

2 22 2

2
2 2 2 2 2 2 2sin

h
c

n fH
k

N f f

π  −  
=

− − + α
                                      (P6) 

Equation (P6) coincides with equation (P1). Thus, equation (P2) is equivalent to the dispersion 

equation (P1), (4.6). 
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FIGURE CAPTIONS 

 

Fig. 1. Frequency isolines at strong stratification: 1'–8' : ω 1=0.9995N , 10.9999N , 10.99999N , 

11.000001943N , 
 

11.000007721N , 11.00001166N , 11.0001846N , ω 1=N . 

Fig. 2. Frequency isolines at weak stratification: 1'–8': ω=2.4f , 2.46f , 20.999N , 21.001N , 
 

21.036N ,
 

21.054N ,
 

21.085N , 2N . 

Fig. 3. Frequency isolines at very weak stratification: 1'–8': ω=1.34f , 1.44f , 

30.994N , 31.003N , 31.109N , 
 

31.116N , 31.126N , 3N . 

Fig. 4. Vertical pulse wave flux profiles of 'u w  (a) and 'v w  (b) at different values ofα angle 

for strong stratification: α1 0= (1'); α π2 / 6= (2'); α π3 / 3= (3'); α π4 / 2= (4').  

Fig. 5. Vertical pulse wave flux profiles of 'u w  (a) and 'v w  (b) at different values ofα angle 

for weak stratification: α1 0= (1'); α π2 / 6= (2'); α π3 / 3= (3'); α π4 / 2= (4').  

Fig. 6. Vertical pulse wave flux profiles of 'u w  (a) and 'v w  (b) at different values ofα angle 

for very weak stratification: α1 0= (1'); α π2 / 6= (2'); α π3 / 3= (3'); α π4 / 2= (4'). 

Fig. 7. Dispersion curves of the first two modes of internal and subinertial waves at strong 

(a, b), weak (c) and very weak (d) stratification. The numbers of the subinertial wave modes are 

marked with a dash. 

Fig. 8. Vertical wave flux profiles of momentum 'u w atom internal (1) and subinertial waves 

(2) for strong (a), weak (b), and very weak (c) stratification; 

the same fluxes only at the internal wave for three types of stratification (d). 

Fig. 9. Vertical wave momentum flux profiles 'v w at internal (1) and subinertial shafts (2) 

for strong (a), weak (b), and very weak (c) stratification; the same fluxes at the subinertial wave 

alone for the three types of stratification (d). 
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