On the motion of a bead on a rough hoop freely rotating around a vertical diameter

Мұқаба

Дәйексөз келтіру

Толық мәтін

Аннотация

We consider the problem of the motion of a heavy bead strung on a rough heavy hoop freely rotating around a vertical diameter. Non-isolated sets of steady state motions of the system are identified, and their bifurcation diagrams are constructed. The dependence of these solutions on an essential parameter of the problem—the constant of the cyclic integral—is studied. The results obtained are compared with the results obtained previously for the case when a rough hoop rotates around a vertical diameter with a constant angular velocity. Characteristic phase portraits are constructed for various combinations of system parameters.

Толық мәтін

Введение. Задача о движении тяжелой бусинки на вращающемся круговом проволочном обруче – классическая задача механики. В случае, когда ось вращения вертикальна и трения нет, эта задача вполне интегрируема. В настоящей работе, в продолжение исследований, начатых ранее (см. [1]), рассматривается задача о движении бусинки на свободно вращающемся около вертикального диаметра тяжелом шероховатом круговом проволочном обруче. Изучается зависимость от параметров задачи областей, заполненных неизолированными положениями равновесия бусинки относительно вращающейся вместе с обручем системы отсчета. Исследуются бифуркации этих областей. При анализе применяют общие подходы к исследованию существования, устойчивости и ветвления равновесий, развитые в работах [2–8].

1. Постановка задачи. Уравнения движения. Рассмотрим движение тяжелой бусинки P MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadcfaaaa@3200@  массы m MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaad2gaaaa@321D@  пренебрежимо малых размеров, нанизанной на тонкий шероховатый массивный круговой проволочный обруч H MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5 wzaGabaabaaaaaaaaapeGae83cHGeaaa@3BAD@  с центром O MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaad+eaaaa@31FF@  радиуса l MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabloriSbaa@325C@  и массы M MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaad2eaaaa@31FD@ . Предположим, что обруч может свободно вращаться вокруг своего вертикального диаметра. Пусть OXYZ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaad+eacaWGybGaamywaiaadQ faaaa@3499@  – абсолютная прямоугольная декартова система отсчета (АСО), ось OY MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaad+eacaWGzbaaaa@32DD@  которой направлена вдоль восходящей вертикали, а Oxyz MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaad+eacaWG4bGaamyEaiaadQ haaaa@34F9@  – подвижная система отсчета (ПСО), ось Ox MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaad+eacaWG4baaaa@32FC@  которой направлена вдоль горизонтального радиуса обруча, ось Oy MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaad+eacaWG5baaaa@32FD@  совпадает с осью OY MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaad+eacaWGzbaaaa@32DD@ , а ось Oz MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaad+eacaWG6baaaa@32FE@  дополняет их до правой тройки.

В настоящей работе предполагается, что свободно вращающийся обруч шероховат и взаимодействие между ним и бусинкой подчиняется закону сухого трения. Основная задача состоит в том, чтобы сопоставить свойства динамики в данной постановке задачи со свойствами динамики в случае, когда обруч вращается с постоянной угловой скоростью [1].

Положение точки P MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadcfaaaa@3200@  определяется вектором OP MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaruavP1wzZbItLDhis9wBH5gaiqWaqaaaaaaaaa Wdbiaa=9eacaWFqbaaaa@385A@ , имеющим координаты

OP= X,Y,Z T MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaruavP1wzZbItLDhis9wBH5gaiqWaqaaaaaaaaa Wdbiaa=9eacaWFqbGaeyypa0ZaaeWaa8aabaWdbiaadIfacaGGSaGa amywaiaacYcacaWGAbaacaGLOaGaayzkaaWdamaaCaaaleqabaWdbi aadsfaaaaaaa@4027@

в АСО и координаты

OP= x,y,z T MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaruavP1wzZbItLDhis9wBH5gaiqWaqaaaaaaaaa Wdbiaa=9eacaWFqbGaeyypa0ZaaeWaa8aabaWdbiaadIhacaGGSaGa amyEaiaacYcacaWG6baacaGLOaGaayzkaaWdamaaCaaaleqabaWdbi aadsfaaaaaaa@4087@

в ПСО.

Обозначим за ψ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabeI8a5baa@32F9@  угол поворота ПСО относительно АСО около оси OY MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaad+eacaWGzbaaaa@32DD@ . Тогда для произвольной точки P MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadcfaaaa@3200@  координаты относительно АСО и ПСО связаны соотношениями:

X=xcosψ+zsinψ,Y=y,Z=xsinψ+zcosψ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIfacqGH9aqpcaWG4bGaae 4yaiaab+gacaqGZbGaeqiYdKNaey4kaSIaamOEaiaabohacaqGPbGa aeOBaiabeI8a5jaacYcacaaMe8Uaamywaiabg2da9iaadMhacaGGSa GaaGjbVlaadQfacqGH9aqpcqGHsislcaWG4bGaae4CaiaabMgacaqG UbGaeqiYdKNaey4kaSIaamOEaiaabogacaqGVbGaae4CaiabeI8a5b aa@5572@ .

Если ψ ˙ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiqbeI8a5zaacaaaaa@3302@  – величина угловой скорости поворота ПСО около оси OY MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaad+eacaWGzbaaaa@32DD@ , то

X ˙ = x ˙ cosψx ψ ˙ sinψ+ z ˙ sinψ+z ψ ˙ cosψ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiqadIfapaGbaiaapeGaeyypa0 JabmiEa8aagaGaa8qacaqGJbGaae4BaiaabohacqaHipqEcqGHsisl caWG4bGafqiYdKNbaiaacaqGZbGaaeyAaiaab6gacqaHipqEcqGHRa WkceWG6bWdayaacaWdbiaabohacaqGPbGaaeOBaiabeI8a5jabgUca RiaadQhacuaHipqEgaGaaiaabogacaqGVbGaae4CaiabeI8a5baa@5057@

Y ˙ = y ˙ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiqadMfapaGbaiaapeGaeyypa0 JabmyEa8aagaGaaaaa@344D@

Z ˙ = x ˙ sinψx ψ ˙ cosψ+ z ˙ cosψz ψ ˙ sinψ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiqadQfapaGbaiaapeGaeyypa0 JaeyOeI0IabmiEa8aagaGaa8qacaqGZbGaaeyAaiaab6gacqaHipqE cqGHsislcaWG4bGafqiYdKNbaiaacaqGJbGaae4BaiaabohacqaHip qEcqGHRaWkceWG6bWdayaacaWdbiaabogacaqGVbGaae4CaiabeI8a 5jabgkHiTiaadQhacuaHipqEgaGaaiaabohacaqGPbGaaeOBaiabeI 8a5baa@5151@

и выражения для кинетической и потенциальной энергии системы запишутся как

T= I 2 ψ ˙ 2 + m 2 X ˙ 2 + Y ˙ 2 + Z ˙ 2 = I 2 ψ ˙ 2 + m 2 ( x ˙ + ψ ˙ z) 2 + y ˙ 2 + ( z ˙ ψ ˙ x) 2 ,U=mgy MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5 wzaGabaabaaaaaaaaapeGae83eXtLaeyypa0ZaaSaaa8aabaWdbiaa dMeaa8aabaWdbiaaikdaaaGafqiYdKNbaiaapaWaaWbaaSqabeaape GaaGOmaaaakiabgUcaRmaalaaapaqaa8qacaWGTbaapaqaa8qacaaI Yaaaamaabmaapaqaa8qaceWGybWdayaacaWaaWbaaSqabeaapeGaaG OmaaaakiabgUcaRiqadMfapaGbaiaadaahaaWcbeqaa8qacaaIYaaa aOGaey4kaSIabmOwa8aagaGaamaaCaaaleqabaWdbiaaikdaaaaaki aawIcacaGLPaaacqGH9aqpdaWcaaWdaeaapeGaamysaaWdaeaapeGa aGOmaaaacuaHipqEgaGaa8aadaahaaWcbeqaa8qacaaIYaaaaOGaey 4kaSYaaSaaa8aabaWdbiaad2gaa8aabaWdbiaaikdaaaWaaeWaa8aa baWdbiaacIcaceWG4bWdayaacaWdbiabgUcaRiqbeI8a5zaacaGaam OEaiaacMcapaWaaWbaaSqabeaapeGaaGOmaaaakiabgUcaRiqadMha paGbaiaadaahaaWcbeqaa8qacaaIYaaaaOGaey4kaSIaaiikaiqadQ hapaGbaiaapeGaeyOeI0IafqiYdKNbaiaacaWG4bGaaiyka8aadaah aaWcbeqaa8qacaaIYaaaaaGccaGLOaGaayzkaaGaaiilaiaaywW7cq WFueFvcqGH9aqpcaWGTbGaam4zaiaadMhaaaa@7351@

T= I 2 ψ ˙ 2 + m 2 X ˙ 2 + Y ˙ 2 + Z ˙ 2 = I 2 ψ ˙ 2 + m 2 ( x ˙ + ψ ˙ z) 2 + y ˙ 2 + ( z ˙ ψ ˙ x) 2 ,U=mgy MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5 wzaGabaabaaaaaaaaapeGae83eXtLaeyypa0ZaaSaaa8aabaWdbiaa dMeaa8aabaWdbiaaikdaaaGafqiYdKNbaiaapaWaaWbaaSqabeaape GaaGOmaaaakiabgUcaRmaalaaapaqaa8qacaWGTbaapaqaa8qacaaI Yaaaamaabmaapaqaa8qaceWGybWdayaacaWaaWbaaSqabeaapeGaaG OmaaaakiabgUcaRiqadMfapaGbaiaadaahaaWcbeqaa8qacaaIYaaa aOGaey4kaSIabmOwa8aagaGaamaaCaaaleqabaWdbiaaikdaaaaaki aawIcacaGLPaaacqGH9aqpdaWcaaWdaeaapeGaamysaaWdaeaapeGa aGOmaaaacuaHipqEgaGaa8aadaahaaWcbeqaa8qacaaIYaaaaOGaey 4kaSYaaSaaa8aabaWdbiaad2gaa8aabaWdbiaaikdaaaWaaeWaa8aa baWdbiaacIcaceWG4bWdayaacaWdbiabgUcaRiqbeI8a5zaacaGaam OEaiaacMcapaWaaWbaaSqabeaapeGaaGOmaaaakiabgUcaRiqadMha paGbaiaadaahaaWcbeqaa8qacaaIYaaaaOGaey4kaSIaaiikaiqadQ hapaGbaiaapeGaeyOeI0IafqiYdKNbaiaacaWG4bGaaiyka8aadaah aaWcbeqaa8qacaaIYaaaaaGccaGLOaGaayzkaaGaaiilaiaaywW7cq WFueFvcqGH9aqpcaWGTbGaam4zaiaadMhaaaa@7351@ .

Здесь и далее I MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadMeaaaa@31F9@  – момент инерции обруча относительно оси вращения. В частном случае однородного обруча I= M l 2 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadMeacqGH9aqpdaWcaaWdae aapeGaamytaiabloriS9aadaahaaWcbeqaa8qacaaIYaaaaaGcpaqa a8qacaaIYaaaaaaa@371E@ , где M – масса обруча.

1.1. Уравнения движения с множителями Лагранжа. Во время движения точка вынуждена оставаться на обруче H MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5 wzaGabaabaaaaaaaaapeGae83cHGeaaa@3BAD@ . Это обстоятельство может быть интерпретировано как наличие двух голономных удерживающих связей, стесняющих движение системы. В подвижных осях эти связи определяются соотношениями:

  f n = 1 2 x 2 + y 2 l 2 =0, f b =z=0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadAgapaWaaSbaaSqaa8qaca WGUbaapaqabaGcpeGaeyypa0ZaaSaaa8aabaWdbiaaigdaa8aabaWd biaaikdaaaWaaeWaa8aabaWdbiaadIhapaWaaWbaaSqabeaapeGaaG OmaaaakiabgUcaRiaadMhapaWaaWbaaSqabeaapeGaaGOmaaaakiab gkHiTiabloriS9aadaahaaWcbeqaa8qacaaIYaaaaaGccaGLOaGaay zkaaGaeyypa0JaaGimaiaacYcacaaMf8UaamOza8aadaWgaaWcbaWd biaadkgaa8aabeaak8qacqGH9aqpcaWG6bGaeyypa0JaaGimaaaa@4A2A@ .  (1.1)

Выпишем уравнения движения, принимая во внимания связи (1.1). Пусть

  L=L ψ ˙ , x ˙ , y ˙ , z ˙ ,x,y,z; λ n , λ b =TU+ λ n f n + λ b f b MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5 wzaGabaabaaaaaaaaapeGae8NeHWKaeyypa0Jae8NeHW0aaeWaa8aa baWdbiqbeI8a5zaacaGaaiilaiqadIhapaGbaiaapeGaaiilaiqadM hapaGbaiaapeGaaiilaiqadQhapaGbaiaapeGaaiilaiaadIhacaGG SaGaamyEaiaacYcacaWG6bGaai4oaiabeU7aS9aadaWgaaWcbaWdbi aad6gaa8aabeaak8qacaGGSaGaeq4UdW2damaaBaaaleaapeGaamOy aaWdaeqaaaGcpeGaayjkaiaawMcaaiabg2da9iab=nr8ujabgkHiTi ab=rr8vjabgUcaRiabeU7aS9aadaWgaaWcbaWdbiaad6gaa8aabeaa k8qacaWGMbWdamaaBaaaleaapeGaamOBaaWdaeqaaOWdbiabgUcaRi abeU7aS9aadaWgaaWcbaWdbiaadkgaa8aabeaak8qacaWGMbWdamaa BaaaleaapeGaamOyaaWdaeqaaaaa@6581@ .  (1.2)

Здесь и далее λ n MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabeU7aS9aadaWgaaWcbaWdbi aad6gaa8aabeaaaaa@342C@ , λ b MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabeU7aS9aadaWgaaWcbaWdbi aadkgaa8aabeaaaaa@3420@  – множители Лагранжа, подлежащие вычислению и определяющие нормальную и бинорамальную компоненты реакции связи

N n = λ n grad f n è N b = λ b grad f b MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaah6eapaWaaSbaaSqaa8qaca WGUbaapaqabaGcpeGaeyypa0Jaeq4UdW2damaaBaaaleaapeGaamOB aaWdaeqaaOWdbiaabEgacaqGYbGaaeyyaiaabsgacaWGMbWdamaaBa aaleaapeGaamOBaaWdaeqaaOGaaGPaV=qacaaMe8Uaaei6aiaaysW7 caaMc8UaaCOta8aadaWgaaWcbaWdbiaadkgaa8aabeaak8qacqGH9a qpcqaH7oaBpaWaaSbaaSqaa8qacaWGIbaapaqabaGcpeGaae4zaiaa bkhacaqGHbGaaeizaiaadAgapaWaaSbaaSqaa8qacaWGIbaapaqaba aaaa@513E@ ,

направленные вдоль радиуса обруча и перпендикулярно плоскости обруча H MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5 wzaGabaabaaaaaaaaapeGae83cHGeaaa@3BAD@  соответственно. Касательная компонента реакции связей – это сила трения T MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaahsfaaaa@3208@ .

Тогда уравнения движения примут вид:

  d dt L q ˙ = L q + T q ,q ψ, λ n , λ b ,x,y,z MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbmaalaaapaqaa8qacaWGKbaapa qaa8qacaWGKbGaamiDaaaadaWcaaWdaeaapeGaeyOaIy7efv3ySLgz nfgDOfdaryqr1ngBPrginfgDObYtUvgaiqaacqWFsecta8aabaWdbi abgkGi2kqadghapaGbaiaaaaWdbiabg2da9maalaaapaqaa8qacqGH ciITcqWFsecta8aabaWdbiabgkGi2kaadghaaaGaey4kaSIaamiva8 aadaWgaaWcbaWdbiaadghaa8aabeaak8qacaGGSaGaaGzbVlaadgha cqGHiiIZdaGadaWdaeaapeGaeqiYdKNaaiilaiabeU7aS9aadaWgaa WcbaWdbiaad6gaa8aabeaak8qacaGGSaGaeq4UdW2damaaBaaaleaa peGaamOyaaWdaeqaaOWdbiaacYcacaWG4bGaaiilaiaadMhacaGGSa GaamOEaaGaay5Eaiaaw2haaaaa@61B1@ .  (1.3)

Здесь величины T ψ = T λ n = T λ b 0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadsfapaWaaSbaaSqaa8qacq aHipqEa8aabeaak8qacqGH9aqpcaWGubWdamaaBaaaleaapeGaeq4U dW2damaaBaaameaapeGaamOBaaWdaeqaaaWcbeaak8qacqGH9aqpca WGubWdamaaBaaaleaapeGaeq4UdW2damaaBaaameaapeGaamOyaaWd aeqaaaWcbeaak8qacqGHHjIUcaaIWaaaaa@415F@ , а величины T x MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadsfapaWaaSbaaSqaa8qaca WG4baapaqabaaaaa@335B@ , T y MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadsfapaWaaSbaaSqaa8qaca WG5baapaqabaaaaa@335C@ , T z MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadsfapaWaaSbaaSqaa8qaca WG6baapaqabaaaaa@335D@  – это компоненты силы трения T MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaahsfaaaa@3208@ , о структуре которой будет сказано ниже. Выпишем выражения для производных при q x,y,z MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadghacqGHiiIZdaGadaWdae aapeGaamiEaiaacYcacaWG5bGaaiilaiaadQhaaiaawUhacaGL9baa aaa@3A4F@ :

  L x ˙ =m x ˙ + ψ ˙ z , L x =m ψ ˙ z ˙ ψ ˙ x + λ n x, L y ˙ =m y ˙ , L y =mg+ λ n y, L z ˙ =m z ˙ ψ ˙ x , L z =m ψ ˙ z ψ ˙ + x ˙ + λ b . MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaafaqaaeqbcaaaaeaaqaaaaaaaaaWdbmaalaaapa qaa8qacqGHciITtuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wz aGabaiab=jrimbWdaeaapeGaeyOaIyRabmiEa8aagaGaaaaapeGaey ypa0JaamyBamaabmaapaqaa8qaceWG4bWdayaacaWdbiabgUcaRiqb eI8a5zaacaGaamOEaaGaayjkaiaawMcaaiaacYcaa8aabaWdbmaala aapaqaa8qacqGHciITcqWFsecta8aabaWdbiabgkGi2kaadIhaaaGa eyypa0JaeyOeI0IaamyBaiqbeI8a5zaacaWaaeWaa8aabaWdbiqadQ hapaGbaiaapeGaeyOeI0IafqiYdKNbaiaacaWG4baacaGLOaGaayzk aaGaey4kaSIaeq4UdW2damaaBaaaleaapeGaamOBaaWdaeqaaOWdbi aadIhacaGGSaaapaqaaaqaaaqaa8qadaWcaaWdaeaapeGaeyOaIyRa e8NeHWeapaqaa8qacqGHciITceWG5bWdayaacaaaa8qacqGH9aqpca WGTbGabmyEa8aagaGaa8qacaGGSaaapaqaa8qadaWcaaWdaeaapeGa eyOaIyRae8NeHWeapaqaa8qacqGHciITcaWG5baaaiabg2da9iabgk HiTiaad2gacaWGNbGaey4kaSIaeq4UdW2damaaBaaaleaapeGaamOB aaWdaeqaaOWdbiaadMhacaGGSaaapaqaaaqaaaqaa8qadaWcaaWdae aapeGaeyOaIyRae8NeHWeapaqaa8qacqGHciITceWG6bWdayaacaaa a8qacqGH9aqpcaWGTbWaaeWaa8aabaWdbiqadQhapaGbaiaapeGaey OeI0IafqiYdKNbaiaacaWG4baacaGLOaGaayzkaaGaaiilaaWdaeaa peWaaSaaa8aabaWdbiabgkGi2kab=jrimbWdaeaapeGaeyOaIyRaam OEaaaacqGH9aqpcaWGTbGafqiYdKNbaiaadaqadaWdaeaapeGaamOE aiqbeI8a5zaacaGaey4kaSIabmiEa8aagaGaaaWdbiaawIcacaGLPa aacqGHRaWkcqaH7oaBpaWaaSbaaSqaa8qacaWGIbaapaqabaGccaGG Uaaaaaaa@9A13@ (1.4)

Кроме того,

L ψ ˙ =I ψ ˙ +m z x ˙ + ψ ˙ z x z ˙ ψ ˙ x =J ψ ˙ +m z x ˙ x z ˙ = p ψ , L ψ =0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbmaalaaapaqaa8qacqGHciITtu uDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGabaiab=jrimbWd aeaapeGaeyOaIyRafqiYdKNbaiaaaaGaeyypa0JaamysaiqbeI8a5z aacaGaey4kaSIaamyBamaabmaapaqaa8qacaWG6bWaaeWaa8aabaWd biqadIhapaGbaiaapeGaey4kaSIafqiYdKNbaiaacaWG6baacaGLOa GaayzkaaGaeyOeI0IaamiEamaabmaapaqaa8qaceWG6bWdayaacaWd biabgkHiTiqbeI8a5zaacaGaamiEaaGaayjkaiaawMcaaaGaayjkai aawMcaaiabg2da9iaadQeacuaHipqEgaGaaiabgUcaRiaad2gadaqa daWdaeaapeGaamOEaiqadIhapaGbaiaapeGaeyOeI0IaamiEaiqadQ hapaGbaiaaa8qacaGLOaGaayzkaaGaeyypa0JaamiCa8aadaWgaaWc baWdbiabeI8a5bWdaeqaaOWdbiaacYcacaaMf8+aaSaaa8aabaWdbi abgkGi2kab=jrimbWdaeaapeGaeyOaIyRaeqiYdKhaaiabg2da9iaa icdaaaa@7252@  (1.5)

Последнее из равенств в (1.5) справедливо в силу того, что функция Лагранжа (1.2) не зависит явно от угла ψ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabeI8a5baa@32F9@ . Это означает, что координата ψ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabeI8a5baa@32F9@  – циклическая и L ψ ˙ = p ψ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbmaalaaapaqaa8qacqGHciITtu uDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGabaiab=jrimbWd aeaapeGaeyOaIyRafqiYdKNbaiaaaaGaeyypa0JaamiCa8aadaWgaa WcbaWdbiabeI8a5bWdaeqaaaaa@44CC@  – первый интеграл уравнений движения. Здесь и далее J=I+m z 2 + x 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadQeacqGH9aqpcaWGjbGaey 4kaSIaamyBamaabmaapaqaa8qacaWG6bWdamaaCaaaleqabaWdbiaa ikdaaaGccqGHRaWkcaWG4bWdamaaCaaaleqabaWdbiaaikdaaaaaki aawIcacaGLPaaaaaa@3C4C@  – момент инерции системы бусинка–обруч относительно оси вращения.

2. Реакции связей и их вычисление. Для того чтобы выписать уравнения движения, требуется знать выражение для силы трения. Прежде всего заметим, что τ= y l , x l ,0 T MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaiiqaqaaaaaaaaaWdbiab=r8a0jabg2da9maabm aapaqaa8qacqGHsisldaWcaaWdaeaaruavP1wzZbItLDhis9wBH5ga iqWapeGaa4xEaaWdaeaapeGaeS4eHWgaaiaacYcadaWcaaWdaeaape Gaa4hEaaWdaeaapeGaeS4eHWgaaiaacYcacaaIWaaacaGLOaGaayzk aaWdamaaCaaaleqabaWdbiaa+rfaaaaaaa@4448@  – единичный вектор, касающийся окружности в точке P. Тогда проекция относительной скорости v= ( x ˙ , y ˙ , z ˙ ) T MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaahAhacqGH9aqpcaGGOaqefq vATv2CG4uz3bIuV1wyUbacemGab8hEa8aagaGaa8qacaGGSaGab8xE a8aagaGaa8qacaGGSaGab8NEa8aagaGaa8qacaGGPaWdamaaCaaale qabaWdbiaa=rfaaaaaaa@3FFE@  точки P на касательную в этой точке составляет

v τ = v,τ = x ˙ y+ y ˙ x l MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadAhapaWaaSbaaSqaa8qacq aHepaDa8aabeaak8qacqGH9aqpdaqadaWdaeaapeGaaCODaiaacYca iiqacqWFepaDaiaawIcacaGLPaaacqGH9aqpdaWcaaWdaeaapeGaey OeI0IabmiEa8aagaGaa8qacaWG5bGaey4kaSIabmyEa8aagaGaa8qa caWG4baapaqaa8qacqWItecBaaaaaa@4321@ .

В случае покоя бусинки относительно ПСО T=Tτ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaahsfacqGH9aqpcaWGubacce Gae8hXdqhaaa@35B2@ , где в силу закона Кулона–Амонтона

  T μ N MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbmaaemaapaqaa8qacaWHubaaca GLhWUaayjcSdGaeyizImQaeqiVd02aaqWaa8aabaWdbiaah6eaaiaa wEa7caGLiWoaaaa@3CCC@ . (2.1)

Здесь и далее μ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabeY7aTbaa@32E1@  – коэффициент трения, N MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaah6eaaaa@3202@  – вектор нормальной реакции, вычисляемый с помощью множителей Лагранжа (см. раздел 2.1).

В случае скольжения бусинки вдоль обруча

T=sign v τ Tτ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaahsfacqGH9aqpcqGHsislca qGZbGaaeyAaiaabEgacaqGUbWaaeWaa8aabaWdbiaadAhadaWgaaWc baacceGae8hXdqhabeaaaOGaayjkaiaawMcaaiaadsfacqWFepaDaa a@3EF4@ ,

где в силу закона Кулона–Амонтона

T=μ N MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadsfacqGH9aqpcqaH8oqBda abdaWdaeaapeGaaCOtaaGaay5bSlaawIa7aaaa@38D8@ .

2.1. Определение множителей Лагранжа. Для определения значений λ n MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaiiqaqaaaaaaaaaWdbiab=T7aS9aadaWgaaWcba qefqvATv2CG4uz3bIuV1wyUbacemWdbiaa+5gaa8aabeaaaaa@39BB@  и λ b MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaiiqaqaaaaaaaaaWdbiab=T7aS9aadaWgaaWcba qefqvATv2CG4uz3bIuV1wyUbacemWdbiaa+jgaa8aabeaaaaa@39AF@  как обычно воспользуемся уравнениями связей (1.1), а также тождествами, получающимися в результате их однократного и двухкратного дифференцирования по времени. Эти тождества имеют вид:

  f ˙ n =x x ˙ +y y ˙ 0, f ˙ b = z ˙ =0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiqadAgapaGbaiaadaWgaaWcba Wdbiaad6gaa8aabeaak8qacqGH9aqpcaWG4bGabmiEa8aagaGaa8qa cqGHRaWkcaWG5bGabmyEa8aagaGaa8qacqGHHjIUcaaIWaGaaiilai aaywW7ceWGMbWdayaacaWaaSbaaSqaa8qacaWGIbaapaqabaGcpeGa eyypa0JabmOEa8aagaGaa8qacqGH9aqpcaaIWaaaaa@44B1@ , (2.2)

  f ¨ n = x ˙ 2 + y ˙ 2 + x ¨ x+ y ¨ y0, f ¨ b = z ¨ 0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaceWGMbGbamaadaWgaaWcbaaeaaaaaaaaa8qaca WGUbaapaqabaGcpeGaeyypa0JabmiEa8aagaGaamaaCaaaleqabaWd biaaikdaaaGccqGHRaWkceWG5bWdayaacaWaaWbaaSqabeaapeGaaG OmaaaakiabgUcaR8aaceWG4bGbamaapeGaamiEaiabgUcaR8aaceWG 5bGbamaapeGaamyEaiabggMi6kaaicdacaGGSaGaaGzbV=aaceWGMb GbamaadaWgaaWcbaWdbiaadkgaa8aabeaak8qacqGH9aqppaGabmOE ayaadaWdbiabggMi6kaaicdaaaa@4B4F@ . (2.3)

Замечание 1. Продифференцируем по времени первое соотношение из (1.5), чтобы получить выражение углового ускорения обруча H MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5 wzaGabaabaaaaaaaaapeGae83cHGeaaa@3BAD@  через остальные координаты и их первые и вторые производные по времени:

  d dt L ψ ˙ =0 ψ ¨ = m z x ¨ x z ¨ +2m x x ˙ +z z ˙ ψ ˙ J MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbmaalaaapaqaa8qacaWGKbaapa qaa8qacaWGKbGaamiDaaaadaWcaaWdaeaapeGaeyOaIy7efv3ySLgz nfgDOfdaryqr1ngBPrginfgDObYtUvgaiqaacqWFsecta8aabaWdbi abgkGi2kqbeI8a5zaacaaaaiabg2da9iaaicdacaaMc8UaaGPaVlaa ykW7cqGHshI3caaMc8UaaGPaVlaaykW7cuaHipqEgaWaaiabg2da9i abgkHiTmaalaaapaqaa8qacaWGTbWaaeWaa8aabaWdbiaadQhaceWG 4bGbamaacqGHsislcaWG4bGabmOEayaadaaacaGLOaGaayzkaaGaey 4kaSIaaGOmaiaad2gadaqadaWdaeaapeGaamiEaiqadIhapaGbaiaa peGaey4kaSIaamOEaiqadQhapaGbaiaaa8qacaGLOaGaayzkaaGafq iYdK3dayaacaaabaWdbiaadQeaaaaaaa@68D5@ . (2.4)

Из соотношения (2.4) в силу (2.3) имеем:

ψ ¨ =2m p ψ x x ˙ (I+m x 2 ) 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiqbeI8a5zaadaGaeyypa0Jaey OeI0IaaGOmaiaad2gacaWGWbWdamaaBaaaleaapeGaeqiYdKhapaqa baGcpeWaaSaaa8aabaWdbiaadIhaceWG4bWdayaacaaabaWdbiaacI cacaWGjbGaey4kaSIaamyBaiaadIhapaWaaWbaaSqabeaapeGaaGOm aaaakiaacMcapaWaaWbaaSqabeaapeGaaGOmaaaaaaaaaa@433E@ .

При движении бусинки по обручу H MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5 wzaGabaabaaaaaaaaapeGae83cHGeaaa@3BAD@  угловое ускорение обруча зависит от положения бусинки и ее скорости. Если бусинка относительно обруча H MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5 wzaGabaabaaaaaaaaapeGae83cHGeaaa@3BAD@  покоится, то угловое ускорение обруча H MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5 wzaGabaabaaaaaaaaapeGae83cHGeaaa@3BAD@  равно нулю.

Из соотношения (1.4)

d dt L z ˙ = L z z ¨ + 2m p ψ J 2 x 2 x ˙ 2 p ψ J x ˙ p ψ 2 J 2 z= λ b m MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbmaalaaapaqaa8qacaWGKbaapa qaa8qacaWGKbGaamiDaaaadaWcaaWdaeaapeGaeyOaIy7efv3ySLgz nfgDOfdaryqr1ngBPrginfgDObYtUvgaiqaacqWFsecta8aabaWdbi abgkGi2kqadQhapaGbaiaaaaWdbiabg2da9maalaaapaqaa8qacqGH ciITcqWFsecta8aabaWdbiabgkGi2kaadQhaaaGaaGPaVlaaykW7ca aMc8UaeyO0H4TaaGPaVlaaykW7ceWG6bGbamaacqGHRaWkdaWcaaWd aeaapeGaaGOmaiaad2gacaWGWbWdamaaBaaaleaapeGaeqiYdKhapa qabaaakeaapeGaamOsa8aadaahaaWcbeqaa8qacaaIYaaaaaaakiaa dIhapaWaaWbaaSqabeaapeGaaGOmaaaakiqadIhapaGbaiaapeGaey OeI0YaaSaaa8aabaWdbiaaikdacaWGWbWdamaaBaaaleaapeGaeqiY dKhapaqabaaakeaapeGaamOsaaaaceWG4bWdayaacaWdbiabgkHiTm aalaaapaqaa8qacaWGWbWdamaaDaaaleaapeGaeqiYdKhapaqaa8qa caaIYaaaaaGcpaqaa8qacaWGkbWdamaaCaaaleqabaWdbiaaikdaaa aaaOGaamOEaiabg2da9maalaaapaqaa8qacqaH7oaBpaWaaSbaaSqa a8qacaWGIbaapaqabaaakeaapeGaamyBaaaaaaa@73A5@ .

Принимая во внимание соотношения (1.1), (2.2) и (2.3), имеем:

λ b = 2mI p ψ (I+m x 2 ) 2 x ˙ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabeU7aS9aadaWgaaWcbaWdbi aadkgaa8aabeaak8qacqGH9aqpcqGHsisldaWcaaWdaeaapeGaaGOm aiaad2gacaWGjbGaamiCa8aadaWgaaWcbaWdbiabeI8a5bWdaeqaaa GcbaWdbiaacIcacaWGjbGaey4kaSIaamyBaiaadIhapaWaaWbaaSqa beaapeGaaGOmaaaakiaacMcapaWaaWbaaSqabeaapeGaaGOmaaaaaa GcceWG4bWdayaacaaaaa@4440@ .

Легко видеть, что λ b MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabeU7aS9aadaWgaaWcbaWdbi aadkgaa8aabeaaaaa@3420@  обращается в нуль в случае, когда бусинка покоится относительно обруча или обручу не придано начальное вращение.

Для определения λ n MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabeU7aS9aadaWgaaWcbaWdbi aad6gaa8aabeaaaaa@342C@  сложим уравнения из (1.3) при q=x MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadghacqGH9aqpcaWG4baaaa@3424@  и при q=y MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadghacqGH9aqpcaWG5baaaa@3425@ . Принимая во внимание первое соотношение из (1.1) и вид вектора T MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaahsfaaaa@3208@ , после преобразований имеем:

  λ n = m l 2 gy x ˙ 2 + y ˙ 2 p ψ 2 x 2 (I+m x 2 ) 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabeU7aS9aadaWgaaWcbaWdbi aad6gaa8aabeaak8qacqGH9aqpdaWcaaWdaeaapeGaamyBaaWdaeaa peGaeS4eHW2damaaCaaaleqabaWdbiaaikdaaaaaaOWaaeWaa8aaba WdbiaadEgacaWG5bGaeyOeI0YaaeWaa8aabaWdbiqadIhapaGbaiaa daahaaWcbeqaa8qacaaIYaaaaOGaey4kaSIabmyEa8aagaGaamaaCa aaleqabaWdbiaaikdaaaaakiaawIcacaGLPaaacqGHsisldaWcaaWd aeaapeGaamiCa8aadaqhaaWcbaWdbiabeI8a5bWdaeaapeGaaGOmaa aakiaadIhapaWaaWbaaSqabeaapeGaaGOmaaaaaOWdaeaapeGaaiik aiaadMeacqGHRaWkcaWGTbGaamiEa8aadaahaaWcbeqaa8qacaaIYa aaaOGaaiyka8aadaahaaWcbeqaa8qacaaIYaaaaaaaaOGaayjkaiaa wMcaaaaa@5263@ .  (2.5)

Для дальнейшего описания движения воспользуемся углом φ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabeA8aQbaa@32E8@ , отсчитываемым от нисходящей вертикали. Имеем

x=lsinφ,y=lcosφ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhacqGH9aqpcqWItecBci GGZbGaaiyAaiaac6gacqaHgpGAcaGGSaGaaGzbVlaadMhacqGH9aqp cqGHsislcqWItecBciGGJbGaai4BaiaacohacqaHgpGAaaa@43E3@

x ˙ =l φ ˙ cosφ, y ˙ =l φ ˙ sinφ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiqadIhapaGbaiaapeGaeyypa0 JaeS4eHWMafqOXdO2dayaacaWdbiGacogacaGGVbGaai4CaiabeA8a QjaacYcacaaMf8UabmyEa8aagaGaa8qacqGH9aqpcqWItecBcuaHgp GApaGbaiaapeGaci4CaiaacMgacaGGUbGaeqOXdOgaaa@4711@

x ¨ =l φ ˙ 2 sinφ+l φ ¨ cosφ, y ¨ =l φ ˙ 2 cosφ+l φ ¨ sinφ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiqadIhagaWaaiabg2da9iabgk HiTiabloriSjqbeA8aQ9aagaGaamaaCaaaleqabaWdbiaaikdaaaGc ciGGZbGaaiyAaiaac6gacqaHgpGAcqGHRaWkcqWItecBcuaHgpGAga WaaiGacogacaGGVbGaai4CaiabeA8aQjaacYcacaaMf8UabmyEayaa daGaeyypa0JaeS4eHWMafqOXdO2dayaacaWaaWbaaSqabeaapeGaaG OmaaaakiGacogacaGGVbGaai4CaiabeA8aQjabgUcaRiabloriSjqb eA8aQzaadaGaci4CaiaacMgacaGGUbGaeqOXdOgaaa@5A81@ .

Подстановка этих выражений в (1.3) при q=x MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadghacqGH9aqpcaWG4baaaa@3424@  и в λ n MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabeU7aS9aadaWgaaWcbaWdbi aad6gaa8aabeaaaaa@342C@  из (2.5) позволяет выписать уравнение движения в виде:

  φ ¨ +P φ ω 2 sinφ= T,τ ml ,P φ =1 c 2 cosφ + sin 2 φ 2 , ω 2 = g l MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiqbeA8aQzaadaGaey4kaSIaam iuamaabmaapaqaa8qacqaHgpGAaiaawIcacaGLPaaacqaHjpWDpaWa aWbaaSqabeaapeGaaGOmaaaakiGacohacaGGPbGaaiOBaiabeA8aQj abg2da9maalaaapaqaa8qadaqadaWdaeaapeGaamivaiaacYcacqaH epaDaiaawIcacaGLPaaaa8aabaWdbiaad2gacqWItecBaaGaaiilai aaywW7caWGqbWaaeWaa8aabaWdbiabeA8aQbGaayjkaiaawMcaaiab g2da9iaaigdacqGHsislcaWGJbWdamaaCaaaleqabaWdbiaaikdaaa GccqGHflY1daWcaaWdaeaapeGaci4yaiaac+gacaGGZbGaeqOXdOga paqaa8qadaqadaWdaeaapeGaeqy+4NVaey4kaSIaci4CaiaacMgaca GGUbWdamaaCaaaleqabaWdbiaaikdaaaGccqaHgpGAaiaawIcacaGL PaaapaWaaWbaaSqabeaapeGaaGOmaaaaaaGccaGGSaGaaGzbVlabeM 8a39aadaahaaWcbeqaa8qacaaIYaaaaOGaeyypa0ZaaSaaa8aabaWd biaadEgaa8aabaWdbiabloriSbaaaaa@6F7C@ ,  (2.6)

где введены следующие безразмерные параметры:

ϰ= M 2m ,c= p ψ ωm l 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5 wzaGabaabaaaaaaaaapeGae8h8dKVaeyypa0ZaaSaaa8aabaWdbiaa d2eaa8aabaWdbiaaikdacaWGTbaaaiaacYcacaaMf8Uaam4yaiabg2 da9maalaaapaqaa8qacaWGWbWdamaaBaaaleaapeGaeqiYdKhapaqa baaakeaapeGaeqyYdCNaamyBaiabloriS9aadaahaaWcbeqaa8qaca aIYaaaaaaaaaa@4D82@ .

Параметр ϰ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5 wzaGabaabaaaaaaaaapeGae8h8dKpaaa@3D25@  характеризует отношение массы обруча к массе бусинки. Параметр c MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadogaaaa@3213@  характеризует угловую скорость вращения обруча.

Координата ψ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabeI8a5baa@32F9@  – циклическая, и обобщенный импульс p ψ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadchapaWaaSbaaSqaa8qacq aHipqEa8aabeaaaaa@3448@ , а вместе с ним и параметр c MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadogaaaa@3213@  неизменны во все время движения. Более того, ПСО вращается, вообще говоря, неравномерно: угловая скорость ее вращения зависит от относительного движения бусинки и составляет

ψ ˙ =ω c ϰ+ sin 2 φ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiqbeI8a59aagaGaa8qacqGH9a qpcqaHjpWDcqGHflY1daWcaaWdaeaapeGaam4yaaWdaeaatuuDJXwA K1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGaba8qacqWFWpq+cqGHRa WkciGGZbGaaiyAaiaac6gapaWaaWbaaSqabeaapeGaaGOmaaaakiab eA8aQbaaaaa@4BF7@ .

Замечание 2. Закон сохранения (1.5) имеет место вне зависимости от того, действует ли на бусинку трение со стороны обруча или нет.

Замечание 3. В рассмотренном в работе [1] случае постоянства угловой скорости вращения обруча уравнение движения бусинки имеет вид, отличающийся от уравнения (2.6).

2.2. Нормальная реакция. Для определения силы трения понадобится выражение для величины нормальной реакции. В общем случае это выражение определяется по формуле:

  N= λ b 2 + λ n 2 l 2 = MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaad6eacqGH9aqpdaGcaaWdae aapeGaeq4UdW2damaaDaaaleaapeGaamOyaaWdaeaapeGaaGOmaaaa kiabgUcaRiabeU7aS9aadaqhaaWcbaWdbiaad6gaa8aabaWdbiaaik daaaGccqWItecBpaWaaWbaaSqabeaapeGaaGOmaaaaaeqaaOGaeyyp a0daaa@3F02@ (2.7)

=ml ω 2 c 2 4 ϰ 2 cos 2 φ (ϰ+ sin 2 φ) 4 φ ˙ 2 + ω 2 c 2 sin 2 φ (ϰ+ sin 2 φ) 2 + ω 2 cosφ+ φ ˙ 2 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabg2da9iaad2gacqWItecBda GcaaWdaeaapeGaeqyYdC3damaaCaaaleqabaWdbiaaikdaaaGccaWG JbWdamaaCaaaleqabaWdbiaaikdaaaGcdaWcaaWdaeaapeGaaGinam rr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbaceaGae8h8dK=d amaaCaaaleqabaWdbiaaikdaaaGccaqGJbGaae4BaiaabohapaWaaW baaSqabeaapeGaaGOmaaaakiabeA8aQbWdaeaapeGaaiikaiab=b=a 5labgUcaRiaabohacaqGPbGaaeOBa8aadaahaaWcbeqaa8qacaaIYa aaaOGaeqOXdOMaaiyka8aadaahaaWcbeqaa8qacaaI0aaaaaaakiab gwSixlqbeA8aQ9aagaGaamaaCaaaleqabaWdbiaaikdaaaGccqGHRa WkdaqadaWdaeaapeGaeqyYdC3damaaCaaaleqabaWdbiaaikdaaaGc caWGJbWdamaaCaaaleqabaWdbiaaikdaaaGcdaWcaaWdaeaapeGaae 4CaiaabMgacaqGUbWdamaaCaaaleqabaWdbiaaikdaaaGccqaHgpGA a8aabaWdbiaacIcacqWFWpq+cqGHRaWkcaqGZbGaaeyAaiaab6gapa WaaWbaaSqabeaapeGaaGOmaaaakiabeA8aQjaacMcapaWaaWbaaSqa beaapeGaaGOmaaaaaaGccqGHRaWkcqaHjpWDpaWaaWbaaSqabeaape GaaGOmaaaakiGacogacaGGVbGaai4CaiabeA8aQjabgUcaRiqbeA8a Q9aagaGaamaaCaaaleqabaWdbiaaikdaaaaakiaawIcacaGLPaaapa WaaWbaaSqabeaapeGaaGOmaaaaaeqaaaaa@835A@

Таким образом, соотношение T=sign φ ˙ μN MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaahsfacqGH9aqpcqGHsislca qGZbGaaeyAaiaabEgacaqGUbWaaeWaa8aabaWdbiqbeA8aQzaacaaa caGLOaGaayzkaaGaeqiVd0MaamOtaaaa@3DAF@ , где N MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaad6eaaaa@31FE@  определяется из (2.7) и задает силу сухого трения в уравнении (2.6)1.

На относительных равновесиях относительное движение отсутствует, т.е. φ ˙ =0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiqbeA8aQzaacaGaeyypa0JaaG imaaaa@34B1@ . Тогда величина нормальной реакции принимает вид:

  N= ω 2 ml cosφ+ c 2 sin 2 φ (+ sin 2 φ ) 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaad6eacqGH9aqpcqaHjpWDpa WaaWbaaSqabeaapeGaaGOmaaaakiaad2gacqWItecBdaabdaWdaeaa peGaci4yaiaac+gacaGGZbGaeqOXdOMaey4kaSIaam4ya8aadaahaa Wcbeqaa8qacaaIYaaaaOWaaSaaa8aabaWdbiGacohacaGGPbGaaiOB a8aadaahaaWcbeqaa8qacaaIYaaaaOGaeqOXdOgapaqaa8qacaGGOa Gaeqy+4NVaey4kaSIaci4CaiaacMgacaGGUbWdamaaCaaaleqabaWd biaaikdaaaGccqaHgpGAcaGGPaWdamaaCaaaleqabaWdbiaaikdaaa aaaaGccaGLhWUaayjcSdaaaa@5510@ . (2.8)

3. Стационарные движения. Для начала определим стационарные (установившиеся) движения системы – движения, на которых позиционная координата φconst MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaabaaaaaaaaape GaeqOXdOMaeyyyIORaae4yaiaab+gacaqGUbGaae4Caiaabshaaaa@40E2@  и скорость циклической координаты ψ ˙ const MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiqbeI8a5zaacaGaeyyyIORaae 4yaiaab+gacaqGUbGaae4Caiaabshaaaa@3981@ , а сама координата ψ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaiiqaqaaaaaaaaaWdbiab=H8a5baa@32FE@  линейно зависит от времени [9, 10].

3.1. Случай гладкого обруча. В отсутствие трения, согласно (2.6), относительные равновесия определяются из уравнения

sinφP φ =0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiGacohacaGGPbGaaiOBaiabeA 8aQjabgwSixlaadcfadaqadaWdaeaapeGaeqOXdOgacaGLOaGaayzk aaGaeyypa0JaaGimaaaa@3E04@ ,

эквивалентного совокупности

sinφ=0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaabohacaqGPbGaaeOBaiabeA 8aQjabg2da9iaaicdaaaa@377B@  

P φ =0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadcfadaqadaWdaeaapeGaeq OXdOgacaGLOaGaayzkaaGaeyypa0JaaGimaaaa@3725@ .

Если sinφ=0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaabohacaqGPbGaaeOBaiabeA 8aQjabg2da9iaaicdaaaa@377B@ , то имеются стационарные движения

  I 0 : φ 0 =0, I π : φ π =π MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadMeapaWaaSbaaSqaa8qaca aIWaaapaqabaGcpeGaaiOoaiaaysW7caaMc8UaeqOXdO2damaaBaaa leaapeGaaGimaaWdaeqaaOWdbiabg2da9iaaicdacaGGSaGaaGjbVl aadMeapaWaaSbaaSqaa8qacqaHapaCa8aabeaak8qacaGG6aGaaGjb VlaaykW7cqaHgpGApaWaaSbaaSqaa8qacqaHapaCa8aabeaak8qacq GH9aqpcqaHapaCaaa@4B6A@ , (3.1)

называемые “прямыми” и отвечающие положениям бусинки в самой нижней и в самой верхней точках вертикального диаметра. Если P φ =0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadcfadaqadaWdaeaapeGaeq OXdOgacaGLOaGaayzkaaGaeyypa0JaaGimaaaa@3725@ , то имеют место “косые” равновесия:

  I : ϰ+ sin 2 φ 2 = c 2 cos φ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadMeapaWaaSbaaSqaamrr1n gBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbaceaWdbiab=zSiLdWd aeqaaOWdbiaacQdacaaMe8UaaGPaVpaabmaapaqaa8qacqWFWpq+cq GHRaWkcaqGZbGaaeyAaiaab6gapaWaaWbaaSqabeaapeGaaGOmaaaa kiabeA8aQ9aadaWgaaWcbaWdbiab=zSiLdWdaeqaaaGcpeGaayjkai aawMcaa8aadaahaaWcbeqaa8qacaaIYaaaaOGaeyypa0Jaam4ya8aa daahaaWcbeqaa8qacaaIYaaaaOGaae4yaiaab+gacaqGZbGaeqOXdO 2damaaBaaaleaapeGae8NXIuoapaqabaaaaa@5ACA@ . (3.2)

Решения (3.1) существуют при всех значениях параметров задачи. Решения (3.2) существуют при cϰ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadogacqGHLjYStuuDJXwAK1 uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGabaiab=b=a5daa@3FD3@ : при c=ϰ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadogacqGH9aqptuuDJXwAK1 uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGabaiab=b=a5daa@3F13@  решение единственно – φ =0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabeA8aQ9aadaWgaaWcbaWefv 3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiqaapeGae8NXIuoa paqabaGcpeGaeyypa0JaaGimaaaa@40F7@ , при c>ϰ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadogacqGH+aGptuuDJXwAK1 uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGabaiab=b=a5daa@3F15@  имеют место два симметричных относительно начала координат решения, принадлежащих интервалу π/2;π/2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbmaabmaapaqaa8qacqGHsislcq aHapaCcaqGVaGaaGOmaiaacUdacqaHapaCcaqGVaGaaGOmaaGaayjk aiaawMcaaaaa@3AD5@ .

Для исследования устойчивости найденных стационарных движений выпишем функцию Рауса, которая имеет вид (см., например, [9–12]):

  R= TU p ψ ψ ˙ | 1.5 =m l 2 1 2 φ ˙ 2 ω 2 U a , U a = c 2 2 ϰ+ sin 2 φ cosφ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5 wzaGabaabaaaaaaaaapeGae83gHiLaeyypa0ZaamWaa8aabaWdbiab =nr8ujabgkHiTiab=rr8vjabgkHiTiaadchapaWaaSbaaSqaa8qacq aHipqEa8aabeaak8qacuaHipqEpaGbaiaaa8qacaGLBbGaayzxaaGa aiiFa8aadaWgaaWcbaWdbmaabmaapaqaa8qacaaIXaGaaiOlaiaaiw daaiaawIcacaGLPaaaa8aabeaak8qacqGH9aqpcaWGTbGaeS4eHW2d amaaCaaaleqabaWdbiaaikdaaaGcdaqadaWdaeaapeWaaSaaa8aaba Wdbiaaigdaa8aabaWdbiaaikdaaaGafqOXdO2dayaacaWaaWbaaSqa beaapeGaaGOmaaaakiabgkHiTiabeM8a39aadaahaaWcbeqaa8qaca aIYaaaaOGae8hfXx1damaaBaaaleaapeGaamyyaaWdaeqaaaGcpeGa ayjkaiaawMcaaiaacYcacaaMf8Uae8hfXx1damaaBaaaleaapeGaam yyaaWdaeqaaOWdbiabg2da9maalaaapaqaa8qacaWGJbWdamaaCaaa leqabaWdbiaaikdaaaaak8aabaWdbiaaikdadaqadaWdaeaapeGae8 h8dKVaey4kaSIaci4CaiaacMgacaGGUbWdamaaCaaaleqabaWdbiaa ikdaaaGccqaHgpGAaiaawIcacaGLPaaaaaGaeyOeI0Iaci4yaiaac+ gacaGGZbGaeqOXdOgaaa@7A0D@ .

Функция U a MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5 wzaGabaabaaaaaaaaapeGae8hfXx1damaaBaaaleaapeGaamyyaaWd aeqaaaaa@3DD3@  – приведенная (эффективная) потенциальная энергия. Ее вторая производная по φ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabeA8aQbaa@32E8@  имеет вид:

  d 2 U a d φ 2 = c 2 ϰ+ sin 2 φ 3 sin 2 2φ ϰ+ sin 2 φ cos2φ +cosφ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbmaalaaapaqaa8qacaWGKbWdam aaCaaaleqabaWdbiaaikdaaaWefv3ySLgznfgDOfdaryqr1ngBPrgi nfgDObYtUvgaiqaakiab=rr8v9aadaWgaaWcbaWdbiaadggaa8aabe aaaOqaa8qacaWGKbGaeqOXdO2damaaCaaaleqabaWdbiaaikdaaaaa aOGaeyypa0ZaaSaaa8aabaWdbiaadogapaWaaWbaaSqabeaapeGaaG OmaaaaaOWdaeaapeWaaeWaa8aabaWdbiab=b=a5labgUcaRiaaboha caqGPbGaaeOBa8aadaahaaWcbeqaa8qacaaIYaaaaOGaeqOXdOgaca GLOaGaayzkaaWdamaaCaaaleqabaWdbiaaiodaaaaaaOGaeyyXIC9a aeWaa8aabaWdbiaabohacaqGPbGaaeOBa8aadaahaaWcbeqaa8qaca aIYaaaaOGaaGOmaiabeA8aQjabgkHiTmaabmaapaqaa8qacqWFWpq+ cqGHRaWkciGGZbGaaiyAaiaac6gapaWaaWbaaSqabeaapeGaaGOmaa aakiabeA8aQbGaayjkaiaawMcaaiaabogacaqGVbGaae4Caiaaikda cqaHgpGAaiaawIcacaGLPaaacqGHRaWkcaqGJbGaae4Baiaabohacq aHgpGAaaa@7360@ . (3.3)

На решении I 0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadMeapaWaaSbaaSqaa8qaca aIWaaapaqabaaaaa@330D@  выражение (3.3) имеет вид:

d 2 U a d φ 2 φ=0 =1 c 2 ϰ 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbmaaeiaapaqaa8qadaWcaaWdae aapeGaamiza8aadaahaaWcbeqaa8qacaaIYaaaamrr1ngBPrwtHrhA XaqeguuDJXwAKbstHrhAG8KBLbaceaGccqWFueFvpaWaaSbaaSqaa8 qacaWGHbaapaqabaaakeaapeGaamizaiabeA8aQ9aadaahaaWcbeqa a8qacaaIYaaaaaaaaOGaayjcSdWdamaaBaaaleaapeGaeqOXdOMaey ypa0JaaGimaaWdaeqaaOWdbiabg2da9iaaigdacqGHsisldaWcaaWd aeaapeGaam4ya8aadaahaaWcbeqaa8qacaaIYaaaaaGcpaqaa8qacq WFWpq+paWaaWbaaSqabeaapeGaaGOmaaaaaaaaaa@51E4@ ,

и оно положительно при ϰ>c MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5 wzaGabaabaaaaaaaaapeGae8h8dKVaeyOpa4Jaam4yaaaa@3F15@ , значит, cтационарное движение I 0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadMeapaWaaSbaaSqaa8qaca aIWaaapaqabaaaaa@330D@  устойчиво по Ляпунову при этих значениях параметров и неустойчиво в противном случае.

На решении I π MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadMeapaWaaSbaaSqaa8qacq aHapaCa8aabeaaaaa@3410@  выражение (3.3) имеет вид:

d 2 U a d φ 2 φ=π =1 c 2 ϰ 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbmaaeiaapaqaa8qadaWcaaWdae aapeGaamiza8aadaahaaWcbeqaa8qacaaIYaaaamrr1ngBPrwtHrhA XaqeguuDJXwAKbstHrhAG8KBLbaceaGccqWFueFvpaWaaSbaaSqaa8 qacaWGHbaapaqabaaakeaapeGaamizaiabeA8aQ9aadaahaaWcbeqa a8qacaaIYaaaaaaaaOGaayjcSdWdamaaBaaaleaapeGaeqOXdOMaey ypa0JaeqiWdahapaqabaGcpeGaeyypa0JaeyOeI0IaaGymaiabgkHi Tmaalaaapaqaa8qacaWGJbWdamaaCaaaleqabaWdbiaaikdaaaaak8 aabaWdbiab=b=a5=aadaahaaWcbeqaa8qacaaIYaaaaaaaaaa@53D4@ ,

и оно отрицательно при всех значениях параметров задачи, следовательно, решение I π MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadMeapaWaaSbaaSqaaiabec 8aWbqabaaaaa@33F1@  всегда неустойчиво.

Наконец, на решении I MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadMeapaWaaSbaaSqaamrr1n gBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbaceaWdbiab=zSiLdWd aeqaaaaa@3E2E@  выражение (3.3) имеет вид:

d 2 U a d φ 2 φ= φ = c 2 ϰ+ sin 2 φ 3 sin 2 2 φ + ϰ+ sin 2 φ sin 2 φ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbmaaeiaapaqaa8qadaWcaaWdae aapeGaamiza8aadaahaaWcbeqaa8qacaaIYaaaamrr1ngBPrwtHrhA XaqeguuDJXwAKbstHrhAG8KBLbaceaGccqWFueFvpaWaaSbaaSqaa8 qacaWGHbaapaqabaaakeaapeGaamizaiabeA8aQ9aadaahaaWcbeqa a8qacaaIYaaaaaaaaOGaayjcSdWdamaaBaaaleaapeGaeqOXdOMaey ypa0JaeqOXdO2damaaBaaameaapeGae8NXIuoapaqabaaaleqaaOWd biabg2da9maalaaapaqaa8qacaWGJbWdamaaCaaaleqabaWdbiaaik daaaaak8aabaWdbmaabmaapaqaa8qacqWFWpq+cqGHRaWkcaqGZbGa aeyAaiaab6gapaWaaWbaaSqabeaapeGaaGOmaaaakiabeA8aQ9aada WgaaWcbaWdbiab=zSiLdWdaeqaaaGcpeGaayjkaiaawMcaa8aadaah aaWcbeqaa8qacaaIZaaaaaaakiabgwSixpaabmaapaqaa8qacaqGZb GaaeyAaiaab6gapaWaaWbaaSqabeaapeGaaGOmaaaakiaaikdacqaH gpGApaWaaSbaaSqaa8qacqWFgls5a8aabeaak8qacqGHRaWkdaqada WdaeaapeGae8h8dKVaey4kaSIaae4CaiaabMgacaqGUbWdamaaCaaa leqabaWdbiaaikdaaaGccqaHgpGApaWaaSbaaSqaa8qacqWFgls5a8 aabeaaaOWdbiaawIcacaGLPaaacaqGZbGaaeyAaiaab6gapaWaaWba aSqabeaapeGaaGOmaaaakiabeA8aQ9aadaWgaaWcbaWdbiab=zSiLd WdaeqaaaGcpeGaayjkaiaawMcaaaaa@82A8@ .

Для всех значений параметров задачи и φ 0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabeA8aQ9aadaWgaaWcbaWefv 3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiqaapeGae8NXIuoa paqabaGcpeGaeyiyIKRaaGimaaaa@41B8@  выражение положительно, следовательно, решение I MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadMeapaWaaSbaaSqaamrr1n gBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbaceaWdbiab=zSiLdWd aeqaaaaa@3E2E@  за исключением точки φ =0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabeA8aQ9aadaWgaaWcbaWefv 3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiqaapeGae8NXIuoa paqabaGcpeGaeyypa0JaaGimaaaa@40F7@  всегда устойчиво. В точке φ =0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabeA8aQ9aadaWgaaWcbaWefv 3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiqaapeGae8NXIuoa paqabaGcpeGaeyypa0JaaGimaaaa@40F7@  вторая производная приведенной потенциальной энергии обращается в нуль, и для определения свойств устойчивости требуется дополнительное исследование.

Следуя [13, 14], вычислим старшие производные приведенной потенциальной энергии в точке φ =0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabeA8aQ9aadaWgaaWcbaWefv 3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiqaapeGae8NXIuoa paqabaGcpeGaeyypa0JaaGimaaaa@40F7@ , c=ϰ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadogacqGH9aqptuuDJXwAK1 uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGabaiab=b=a5daa@3F13@ :

d 3 U a d φ 3 φ=0,c=ϰ =0, d 4 U a d φ 4 φ=0,c=ϰ =3 1+ 4 ϰ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbmaaeiaapaqaa8qadaWcaaWdae aapeGaamiza8aadaahaaWcbeqaa8qacaaIZaaaamrr1ngBPrwtHrhA XaqeguuDJXwAKbstHrhAG8KBLbaceaGccqWFueFvpaWaaSbaaSqaa8 qacaWGHbaapaqabaaakeaapeGaamizaiabeA8aQ9aadaahaaWcbeqa a8qacaaIZaaaaaaaaOGaayjcSdWdamaaBaaaleaapeGaeqOXdOMaey ypa0JaaGimaiaacYcacaaMc8Uaam4yaiabg2da9iab=b=a5dWdaeqa aOWdbiabg2da9iaaicdacaGGSaGaaGzbVpaaeiaapaqaa8qadaWcaa WdaeaapeGaamiza8aadaahaaWcbeqaa8qacaaI0aaaaOGae8hfXx1d amaaBaaaleaapeGaamyyaaWdaeqaaaGcbaWdbiaadsgacqaHgpGApa WaaWbaaSqabeaapeGaaGinaaaaaaaakiaawIa7a8aadaWgaaWcbaWd biabeA8aQjabg2da9iaaicdacaGGSaGaaGPaVlaadogacqGH9aqpcq WFWpq+a8aabeaak8qacqGH9aqpcaaIZaWaaeWaa8aabaWdbiaaigda cqGHRaWkdaWcaaWdaeaapeGaaGinaaWdaeaapeGae8h8dKpaaaGaay jkaiaawMcaaaaa@71F2@ .

Четвертая производная положительна при всех значениях параметров задачи, откуда следует устойчивость бифуркационной точки.

 

Рис. 1. Бусинка на обруче.

 

Все три класса стационарных движений изображены на бифуркационных диаграммах (рис. 2). На рис. 2 слева изображена зависимость параметра c 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadogapaWaaWbaaSqabeaape GaaGOmaaaaaaa@331B@  от φ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabeA8aQbaa@32E8@ , справа – зависимость параметра ϰ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5 wzaGabaabaaaaaaaaapeGae8h8dKpaaa@3D25@  от φ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabeA8aQbaa@32E7@ . На этих диаграммах видна реализация правила чередования устойчивости при одних и тех же значениях параметра c MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadogaaaa@3213@  или ϰ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5 wzaGabaabaaaaaaaaapeGae8h8dKpaaa@3D25@  [9–12]. Ветвление решений происходит при φ=0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabeA8aQjabg2da9iaaicdaaa a@34A8@  и ϰ=c MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5 wzaGabaabaaaaaaaaapeGae8h8dKVaeyypa0Jaam4yaaaa@3F13@ . Кроме того, кривая, задаваемая условием λ n =0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabeU7aS9aadaWgaaWcbaWdbi aad6gaa8aabeaak8qacqGH9aqpcaaIWaaaaa@3606@ , отделяет относительные равновесия, на которых λ n >0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabeU7aS9aadaWgaaWcbaWdbi aad6gaa8aabeaak8qacqGH+aGpcaaIWaaaaa@3608@  от относительных равновесий, на которых λ n <0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabeU7aS9aadaWgaaWcbaWdbi aad6gaa8aabeaak8qacqGH8aapcaaIWaaaaa@3604@ .

 

Рис. 2. Бифуркационные диаграммы в отсутствие трения для разных сочетаний параметров: на плоскости φ;c2 слева; на плоскости φ;ϰ справа.

 

Замечание 4. Задача о бифуркации положений относительного равновесия тяжелой бусинки на гладком круглом обруче, равномерно вращающемся вокруг своего вертикального диаметра, является учебной задачей по теоретической механике и теории устойчивости движения (см., например, [9, 10, 15]). Однако случай, когда обруч массивен и ему позволено свободно, без трения вращаться вокруг своего вертикального диаметра, обычно в литературе не обсуждается.

3.2. Случай шероховатого обруча. Стационарные движения при наличии трения определяются из неравенства (2.1), выражающего закон Кулона–Амонтона, в которое вместо T MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaahsfaaaa@3208@  подставляется его выражение из уравнения (2.6). Принимая во внимание, что на стационарных движениях φ ¨ 0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaiiqaqaaaaaaaaaWdbiqb=z8aQzaadaGaeyyyIO RaaGimaaaa@357B@ , а также выражение для нормальной реакции (2.8), неравенство (2.1) представим в виде:

  sinφP φ μ cosφ+ c 2 sin 2 φ (ϰ+ sin 2 φ) 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbmaaemaapaqaa8qaciGGZbGaai yAaiaac6gacqaHgpGAcqGHflY1caWGqbWaaeWaa8aabaWdbiabeA8a QbGaayjkaiaawMcaaaGaay5bSlaawIa7aiabgsMiJkabeY7aTnaaem aapaqaa8qacaqGJbGaae4BaiaabohacqaHgpGAcqGHRaWkdaWcaaWd aeaapeGaam4ya8aadaahaaWcbeqaa8qacaaIYaaaaOGaae4CaiaabM gacaqGUbWdamaaCaaaleqabaWdbiaaikdaaaGccqaHgpGAa8aabaWd biaacIcatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGabai ab=b=a5labgUcaRiaabohacaqGPbGaaeOBa8aadaahaaWcbeqaa8qa caaIYaaaaOGaeqOXdOMaaiyka8aadaahaaWcbeqaa8qacaaIYaaaaa aaaOGaay5bSlaawIa7aaaa@6871@ . (3.4)

3.2.1. Зависимость решений от параметров ϰ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5 wzaGabbabaaaaaaaaapeGae8h8dKpaaa@3D26@  и c MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaruavP1wzZbItLDhis9wBH5gaiqWaqaaaaaaaaa Wdbiaa=ngaaaa@379D@ . Выражение в левой части неравенства обращается в нуль на решениях I 0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaruavP1wzZbItLDhis9wBH5gaiqWaqaaaaaaaaa Wdbiaa=LeapaWaaSbaaSqaa8qacaaIWaaapaqabaaaaa@3897@ , I π MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaruavP1wzZbItLDhis9wBH5gaiqWaqaaaaaaaaa Wdbiaa=LeapaWaaSbaaSqaa8qacqaHapaCa8aabeaaaaa@399A@ , I MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaruavP1wzZbItLDhis9wBH5gaiqWaqaaaaaaaaa Wdbiaa=LeapaWaaSbaaSqaamrr1ngBPrwtHrhAXaqeguuDJXwAKbst HrhAG8KBLbacfaWdbiab+zSiLdWdaeqaaaaa@43B8@ , из предыдущего пункта, при этом выражение в правой части неравенства обращается в нуль при λ n =0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaiiqaqaaaaaaaaaWdbiab=T7aS9aadaWgaaWcba qefqvATv2CG4uz3bIuV1wyUbacemWdbiaa+5gaa8aabeaak8qacqGH 9aqpcaaIWaaaaa@3B95@ . Выделим на плоскости φ, c 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbmaabmaapaqaaGGab8qacqWFgp GAcaGGSaGaam4ya8aadaahaaWcbeqaa8qacaaIYaaaaaGccaGLOaGa ayzkaaaaaa@3740@  четыре области R 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5 wzaGabaabaaaaaaaaapeGae83gHi1damaaBaaaleaapeGaaGymaaWd aeqaaaaa@3CDC@ , R 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5 wzaGabaabaaaaaaaaapeGae83gHi1damaaBaaaleaapeGaaGOmaaWd aeqaaaaa@3CDD@ , R 3 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5 wzaGabaabaaaaaaaaapeGae83gHi1damaaBaaaleaapeGaaG4maaWd aeqaaaaa@3CDE@ , R 4 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5 wzaGabaabaaaaaaaaapeGae83gHi1damaaBaaaleaapeGaaGinaaWd aeqaaaaa@3CDF@  так, как это показано на рис. 3.

 

Рис. 3. Области Ri,i=1,2,3,4 знакопостоянства подмодульных выражений неравенства (3.4).

 

Решения неравенства (3.4) в областях R i ,i=1,2,3,4 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5 wzaGabaabaaaaaaaaapeGae83gHi1damaaBaaaleaapeGaamyAaaWd aeqaaOWdbiaacYcacaaMc8UaamyAaiabg2da9iaaigdacaGGSaGaaG OmaiaacYcacaaIZaGaaiilaiaaisdaaaa@465A@  изображены на рис. 4.

 

Рис. 4. Подобласти областей Ri,i=1,2,3,4, отвечающие решениям неравенства (3.4).

 

Таким образом, при конкретных значениях параметров ϰ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5 wzaGabaabaaaaaaaaapeGae8h8dKpaaa@3D25@ , μ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabeY7aTbaa@32E1@  неравенство (3.4) задает область на цилиндре R 1 c 2 × S 1 φ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaahkfapaWaaWbaaSqabeaape GaaGymaaaakmaabmaapaqaa8qacaWGJbWdamaaCaaaleqabaWdbiaa ikdaaaaakiaawIcacaGLPaaacqGHxdaTcaWHtbWdamaaCaaaleqaba WdbiaaigdaaaGcdaqadaWdaeaapeGaeqOXdOgacaGLOaGaayzkaaaa aa@3E22@ , каждой точке которой отвечает стационарное движение системы. Для каждого значения c MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadogaaaa@3213@  как из формулы (3.4), так и по рис. 5 (слева) можно установить области, заполненные стационарными движениями (ОЗСД).

 

Рис. 5. Бифуркационная диаграмма при наличии трения для разных сочетаний параметров. Здесь tgφ*=μ, tgφ=μ1.

 

При c=0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadogacqGH9aqpcaaIWaaaaa@33D3@ , т.е. в случае, когда обручу не придано изначальное вращение, ОЗСД состоит из двух компонент – двух отрезков одинаковой ширины 2 φ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaikdacqaHgpGApaWaaSbaaS qaamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbaceaWdbiab =zSiLdWdaeqaaaaa@3FD9@ , где

φ :tg φ * =μ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabeA8aQ9aadaWgaaWcbaWefv 3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiqaapeGae8NXIuoa paqabaGcpeGaaiOoaiaaysW7caqG0bGaae4zaiabeA8aQ9aadaWgaa WcbaWdbiaabQcaa8aabeaak8qacqGH9aqpcqaH8oqBaaa@48FD@ .

Один из этих отрезков, S 0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadofapaWaaSbaaSqaa8qaca aIWaaapaqabaaaaa@3317@ , содержит нижнюю точку обруча, другой, S π MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadofapaWaaSbaaSqaa8qacq aHapaCa8aabeaaaaa@341A@ , – его верхнюю точку. С возрастанием c 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadogapaWaaWbaaSqabeaape GaaGOmaaaaaaa@331B@  нижний отрезок начинает расширяться, а верхний – неограниченно сужаться, по ширине стремясь к нулю. При некотором критическом значении c crit 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadogapaWaa0baaSqaa8qaca qGJbGaaeOCaiaabMgacaqG0baapaqaa8qacaaIYaaaaaaa@36F8@  нижний отрезок S 0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadofapaWaaSbaaSqaa8qaca aIWaaapaqabaaaaa@3317@  распадается на три компоненты. Одна из них, I 00 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadMeapaWaaSbaaSqaa8qaca aIWaGaaGimaaWdaeqaaaaa@33C7@ , симметричная относительно горизонтальной оси, начинает неограниченно сужаться, по ширине стремясь к нулю. Две другие компоненты I 0± MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadMeapaWaaSbaaSqaa8qaca aIWaGaeyySaelapaqabaaaaa@34FB@ , симметричные друг по отношению к другу относительно оси абсцисс, при неограниченном росте c2 по ширине стремятся к конечному значению π2 φ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabec8aWjabgkHiTiaaikdacq aHgpGApaWaaSbaaSqaamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhA G8KBLbaceaWdbiab=zSiLlab=zSiLdWdaeqaaaaa@44D5@ , где φ = μ 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabeA8aQ9aadaWgaaWcbaWefv 3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiqaapeGae8NXIuUa e8NXIuoapaqabaGcpeGaeyypa0JaeqiVd02damaaCaaaleqabaWdbi abgkHiTiaaigdaaaaaaa@4639@ . Левая и правая границы ветви I 0+ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadMeapaWaaSbaaSqaa8qaca aIWaGaey4kaScapaqabaaaaa@33EF@  стремятся асимптотически к значениям углов φ= φ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabeA8aQjabg2da9iabeA8aQ9 aadaWgaaWcbaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvga iqaapeGae8NXIuUae8NXIuoapaqabaaaaa@4432@  и φ=π φ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabeA8aQjabg2da9iabec8aWj abgkHiTiabeA8aQ9aadaWgaaWcbaWefv3ySLgznfgDOfdaryqr1ngB PrginfgDObYtUvgaiqaapeGae8NXIuUae8NXIuoapaqabaaaaa@46DC@  соответственно. Аналогичные рассуждения позволяют построить диаграмму на плоскости φ;ϰ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbmaabmaapaqaa8qacqaHgpGAca GG7aWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiqaacqWF Wpq+aiaawIcacaGLPaaaaaa@4149@ , см. рис. 5 (справа).

В той части цилиндра R 1 c 2 × S 1 φ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaahkfapaWaaWbaaSqabeaape GaaGymaaaakmaabmaapaqaa8qacaWGJbWdamaaCaaaleqabaWdbiaa ikdaaaaakiaawIcacaGLPaaacqGHxdaTcaWHtbWdamaaCaaaleqaba WdbiaaigdaaaGcdaqadaWdaeaapeGaeqOXdOgacaGLOaGaayzkaaaa aa@3E22@ , где выполнено неравенство

sinφ c 2 F φ cosφ cosφ+ c 2 F φ sinφ >0,F φ = ϰ+ sin 2 φ 2 sinφ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbmaabmaapaqaa8qaciGGZbGaai yAaiaac6gacqaHgpGAcqGHsisldaWcaaWdaeaapeGaam4ya8aadaah aaWcbeqaa8qacaaIYaaaaaGcpaqaa8qacaWGgbWaaeWaa8aabaWdbi abeA8aQbGaayjkaiaawMcaaaaaciGGJbGaai4BaiaacohacqaHgpGA aiaawIcacaGLPaaacqGHflY1daqadaWdaeaapeGaci4yaiaac+gaca GGZbGaeqOXdOMaey4kaSYaaSaaa8aabaWdbiaadogapaWaaWbaaSqa beaapeGaaGOmaaaaaOWdaeaapeGaamOramaabmaapaqaa8qacqaHgp GAaiaawIcacaGLPaaaaaGaci4CaiaacMgacaGGUbGaeqOXdOgacaGL OaGaayzkaaGaeyOpa4JaaGimaiaacYcacaaMf8UaamOramaabmaapa qaa8qacqaHgpGAaiaawIcacaGLPaaacqGH9aqpdaWcaaWdaeaapeWa aeWaa8aabaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiq aapeGae8h8dKVaey4kaSIaae4CaiaabMgacaqGUbWdamaaCaaaleqa baWdbiaaikdaaaGccqaHgpGAaiaawIcacaGLPaaapaWaaWbaaSqabe aapeGaaGOmaaaaaOWdaeaapeGaci4CaiaacMgacaGGUbGaeqOXdOga aaaa@7B1E@ , (3.5)

граница ОЗСД определяется уравнением

  F φ G + φ = c 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadAeadaqadaWdaeaapeGaeq OXdOgacaGLOaGaayzkaaGaeyyXICTaam4ra8aadaWgaaWcbaWdbiab gUcaRaWdaeqaaOWdbmaabmaapaqaa8qacqaHgpGAaiaawIcacaGLPa aacqGH9aqpcaWGJbWdamaaCaaaleqabaWdbiaaikdaaaaaaa@4022@ , (3.6)

а в той части цилиндра, где неравенство (3.5) выполнено с обратным знаком, – уравнением

  F φ G φ = c 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadAeadaqadaWdaeaapeGaeq OXdOgacaGLOaGaayzkaaGaeyyXICTaam4ra8aadaWgaaWcbaWdbiab gkHiTaWdaeqaaOWdbmaabmaapaqaa8qacqaHgpGAaiaawIcacaGLPa aacqGH9aqpcaWGJbWdamaaCaaaleqabaWdbiaaikdaaaaaaa@402D@ , (3.7)

где G ± φ =tg φα MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadEeapaWaaSbaaSqaa8qacq GHXcqSa8aabeaak8qadaqadaWdaeaapeGaeqOXdOgacaGLOaGaayzk aaGaeyypa0JaaeiDaiaabEgadaqadaWdaeaapeGaeqOXdOMaeS4eI0 MaeqySdegacaGLOaGaayzkaaaaaa@40DC@ , α MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabeg7aHbaa@32CA@ : tgα=μ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaabshacaqGNbGaeqySdeMaey ypa0JaeqiVd0gaaa@3767@  – так называемый угол трения. Чтобы определить точки ветвления ОЗСД, найдем производные функций (3.6) и (3.7) по φ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabeA8aQbaa@32E8@  и приравняем их к нулю. Так как

  dF dφ = cosφ sin 2 φ 3 sin 2 φϰ sin 2 φ+ϰ , d G ± dφ = 1 cos 2 φα MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbmaalaaapaqaa8qacaWGKbGaam OraaWdaeaapeGaamizaiabeA8aQbaacqGH9aqpdaWcaaWdaeaapeGa ci4yaiaac+gacaGGZbGaeqOXdOgapaqaa8qaciGGZbGaaiyAaiaac6 gapaWaaWbaaSqabeaapeGaaGOmaaaakiabeA8aQbaacqGHflY1daqa daWdaeaapeGaaG4maiGacohacaGGPbGaaiOBa8aadaahaaWcbeqaa8 qacaaIYaaaaOGaeqOXdOMaeyOeI0Yefv3ySLgznfgDOfdaryqr1ngB PrginfgDObYtUvgaiqaacqWFWpq+aiaawIcacaGLPaaacqGHflY1da qadaWdaeaapeGaci4CaiaacMgacaGGUbWdamaaCaaaleqabaWdbiaa ikdaaaGccqaHgpGAcqGHRaWkcqWFWpq+aiaawIcacaGLPaaacaGGSa GaaGPaVlaaykW7caaMc8UaaGPaVpaalaaapaqaa8qacaWGKbGaam4r a8aadaWgaaWcbaWdbiabgglaXcWdaeqaaaGcbaWdbiaadsgacqaHgp GAaaGaeyypa0ZaaSaaa8aabaWdbiaaigdaa8aabaWdbiGacogacaGG VbGaai4Ca8aadaahaaWcbeqaa8qacaaIYaaaaOWaaeWaa8aabaWdbi abeA8aQjabloHiTjabeg7aHbGaayjkaiaawMcaaaaaaaa@7F79@ ,

то c crit 2 =F φ crit G ± φ crit MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadogapaWaa0baaSqaa8qaca qGJbGaaeOCaiaabMgacaqG0baapaqaa8qacaaIYaaaaOGaeyypa0Ja amOramaabmaapaqaa8qacqaHgpGApaWaaSbaaSqaa8qacaqGJbGaae OCaiaabMgacaqG0baapaqabaaak8qacaGLOaGaayzkaaGaeyyXICTa am4ra8aadaWgaaWcbaWdbiabgglaXcWdaeqaaOWdbmaabmaapaqaa8 qacqaHgpGApaWaaSbaaSqaa8qacaWGJbGaamOCaiaadMgacaWG0baa paqabaaak8qacaGLOaGaayzkaaaaaa@4D81@ . Здесь критические углы φ crit MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabeA8aQ9aadaWgaaWcbaWdbi aabogacaqGYbGaaeyAaiaabshaa8aabeaaaaa@3700@  определяются из уравнений

dF dφ G ± +F d G ± dφ =0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbmaalaaapaqaa8qacaWGKbGaam OraaWdaeaapeGaamizaiabeA8aQbaacaWGhbWdamaaBaaaleaapeGa eyySaelapaqabaGcpeGaey4kaSIaamOramaalaaapaqaa8qacaWGKb Gaam4ra8aadaWgaaWcbaWdbiabgglaXcWdaeqaaaGcbaWdbiaadsga cqaHgpGAaaGaeyypa0JaaGimaaaa@435A@ ,

которые после преобразований принимают следующий вид:

sin 2 φ crit 3sin 2 φ crit 2α +2tg φ crit sin 2 φ crit 2α 2tg φ crit =ϰ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiGacohacaGGPbGaaiOBa8aada ahaaWcbeqaa8qacaaIYaaaaOWaaeWaa8aabaWdbiabeA8aQ9aadaWg aaWcbaWdbiaadogacaWGYbGaamyAaiaadshaa8aabeaaaOWdbiaawI cacaGLPaaacqGHflY1daWcaaWdaeaapeGaaG4maiGacohacaGGPbGa aiOBamaabmaapaqaa8qacaaIYaGaeqOXdO2damaaBaaaleaapeGaae 4yaiaabkhacaqGPbGaaeiDaaWdaeqaaOWdbiabloHiTjaaikdacqaH XoqyaiaawIcacaGLPaaacqGHRaWkcaaIYaGaamiDaiaadEgadaqada WdaeaapeGaeqOXdO2damaaBaaaleaapeGaae4yaiaabkhacaqGPbGa aeiDaaWdaeqaaaGcpeGaayjkaiaawMcaaaWdaeaapeGaci4CaiaacM gacaGGUbWaaeWaa8aabaWdbiaaikdacqaHgpGApaWaaSbaaSqaa8qa caqGJbGaaeOCaiaabMgacaqG0baapaqabaGcpeGaeS4eI0MaaGOmai abeg7aHbGaayjkaiaawMcaaiabgkHiTiaaikdacaWG0bGaam4zamaa bmaapaqaa8qacqaHgpGApaWaaSbaaSqaa8qacaqGJbGaaeOCaiaabM gacaqG0baapaqabaaak8qacaGLOaGaayzkaaaaaiabg2da9mrr1ngB PrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbaceaGae8h8dKpaaa@80BA@ .

3.2.2. Зависимость решений от параметра μ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaiiqaqaaaaaaaaaWdbiab=X7aTbaa@32E7@ . Исследуем решения неравенства (3.4) в зависимости от параметра μ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaiiqaqaaaaaaaaaWdbiab=X7aTbaa@32E7@ . Рассмотрим функцию

f φ = sinφ (ϰ+ sin 2 φ) 2 P φ cosφ (ϰ+ sin 2 φ) 2 + c 2 sin 2 φ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadAgadaqadaWdaeaapeGaeq OXdOgacaGLOaGaayzkaaGaeyypa0ZaaqWaa8aabaWdbmaalaaapaqa a8qaciGGZbGaaiyAaiaac6gacqaHgpGAcaGGOaWefv3ySLgznfgDOf daryqr1ngBPrginfgDObYtUvgaiqaacqWFWpq+cqGHRaWkciGGZbGa aiyAaiaac6gapaWaaWbaaSqabeaapeGaaGOmaaaakiabeA8aQjaacM capaWaaWbaaSqabeaapeGaaGOmaaaakiaadcfadaqadaWdaeaapeGa eqOXdOgacaGLOaGaayzkaaaapaqaa8qaciGGJbGaai4Baiaacohacq aHgpGAcaGGOaGae8h8dKVaey4kaSIaci4CaiaacMgacaGGUbWdamaa CaaaleqabaWdbiaaikdaaaGccqaHgpGAcaGGPaWdamaaCaaaleqaba WdbiaaikdaaaGccqGHRaWkcaWGJbWdamaaCaaaleqabaWdbiaaikda aaGcciGGZbGaaiyAaiaac6gapaWaaWbaaSqabeaapeGaaGOmaaaaki abeA8aQbaaaiaawEa7caGLiWoaaaa@7045@ .

Эта функция является четной, периодической с периодом 2π MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaikdacqaHapaCaaa@33A4@  по переменной φ и имеет разрывы при тех значениях φ, где обращается в нуль нормальная реакция λn. Нулям функции f φ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadAgadaqadaWdaeaapeGaeq OXdOgacaGLOaGaayzkaaaaaa@357A@  отвечают корни уравнений sinφ = 0 или P (φ) = 0. Топология решений неравенства (3.4) существенно зависит от параметров ϰ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5 wzaGabaabaaaaaaaaapeGae8h8dKpaaa@3D25@  и c MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadogaaaa@3213@ . Рассмотрим различные сочетания этих параметров.

При ϰ>c MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5 wzaGabaabaaaaaaaaapeGae8h8dKVaeyOpa4Jaam4yaaaa@3F15@  функция P (φ) положительна, и f φ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadAgadaqadaWdaeaapeGaeq OXdOgacaGLOaGaayzkaaaaaa@357B@  обращается в нуль при φ=0,±π MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabeA8aQjabg2da9iaaicdaca GGSaGaaGPaVlaaykW7caqGXcGaeqiWdahaaa@3B5F@ . Решению неравенства f φ μ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadAgadaqadaWdaeaapeGaeq OXdOgacaGLOaGaayzkaaGaeyizImQaeqiVd0gaaa@38E6@  отвечают два отрезка, содержащих нижнее I 0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadMeapaWaaSbaaSqaa8qaca aIWaaapaqabaaaaa@330D@  и верхнее I π MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadMeapaWaaSbaaSqaa8qacq aHapaCa8aabeaaaaa@3410@  положения относительного равновесия бусинки. При увеличении μ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabeY7aTbaa@32E1@  длина этих отрезков увеличивается, но отрезки не сливаются друг с другом из-за наличия разрывов функции f φ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadAgadaqadaWdaeaapeGaeq OXdOgacaGLOaGaayzkaaaaaa@357A@ . При φ = 0 функция f φ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadAgadaqadaWdaeaapeGaeq OXdOgacaGLOaGaayzkaaaaaa@357A@  справа и слева от этой точки имеет разные производные, а именно: f' 0 ± =± ϰ 2 c 2 ϰ 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadAgacaGGNaWaaeWaa8aaba WdbiaaicdapaWaaSbaaSqaa8qacqGHXcqSa8aabeaaaOWdbiaawIca caGLPaaacqGH9aqpcqGHXcqSdaWcaaWdaeaatuuDJXwAK1uy0Hwmae Hbfv3ySLgzG0uy0Hgip5wzaGaba8qacqWFWpq+paWaaWbaaSqabeaa peGaaGOmaaaakiabgkHiTiaadogapaWaaWbaaSqabeaapeGaaGOmaa aaaOWdaeaapeGae8h8dK=damaaCaaaleqabaWdbiaaikdaaaaaaaaa @4E33@  и для ϰ>c MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5 wzaGabaabaaaaaaaaapeGae8h8dKVaeyOpa4Jaam4yaaaa@3F15@  имеют место неравенства f' 0 + >0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadAgacaGGNaWaaeWaa8aaba WdbiaaicdapaWaaSbaaSqaa8qacqGHRaWka8aabeaaaOWdbiaawIca caGLPaaacqGH+aGpcaaIWaaaaa@383B@  и f' 0 <0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadAgacaGGNaWaaeWaa8aaba WdbiaaicdapaWaaSbaaSqaa8qacqGHsisla8aabeaaaOWdbiaawIca caGLPaaacqGH8aapcaaIWaaaaa@3842@ . Области, отвечающие решениям, изображены на рис. 6 слева.

 

Рис. 6. Зависимость fφ от коэффициента трения μ: ϰ>c слева, ϰ=c по центру, ϰ<c справа.

 

Для случая ϰ=c MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5 wzaGabaabaaaaaaaaapeGae8h8dKVaeyypa0Jaam4yaaaa@3F13@  касательная в точке φ = 0 к графику функции f φ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadAgadaqadaWdaeaapeGaeq OXdOgacaGLOaGaayzkaaaaaa@357A@  становится горизонтальной f' 0 =0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadAgacaGGNaWaaeWaa8aaba WdbiaaicdaaiaawIcacaGLPaaacqGH9aqpcaaIWaaaaa@36E3@ , см. рис. 6 по центру.

При ϰ<c MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5 wzaGabaabaaaaaaaaapeGae8h8dKVaeyipaWJaam4yaaaa@3F11@  функция P (φ) имеет два противоположных корня, что в сочетании с решениями φ=0,±π MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabeA8aQjabg2da9iaaicdaca GGSaGaaGPaVlaaykW7caqGXcGaeqiWdahaaa@3B5F@  позволяет говорить о четырех семействах решений неравенства f φ μ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadAgadaqadaWdaeaapeGaeq OXdOgacaGLOaGaayzkaaGaeyizImQaeqiVd0gaaa@38E6@ . Как и ранее, выделим решения, содержащие нижнее I 0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadMeapaWaaSbaaSqaa8qaca aIWaaapaqabaaaaa@330D@  и верхнее I π MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadMeapaWaaSbaaSqaa8qacq aHapaCa8aabeaaaaa@3410@  положения относительного равновесия бусинки. Помимо этого, появляются семейства решений, содержащие косые равновесия I MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadMeapaWaaSbaaSqaamrr1n gBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbaceaWdbiab=zSiLdWd aeqaaaaa@3E2E@ , определяемые соотношением (3.2). При увеличении μ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabeY7aTbaa@32E1@  отрезки, отвечающие решениям, увеличиваются. Существует μ= μ crit MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabeY7aTjabg2da9iabeY7aT9 aadaWgaaWcbaWdbiaabogacaqGYbGaaeyAaiaabshaa8aabeaaaaa@39B4@ , начиная с которого множества решений, содержащие I 0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadMeapaWaaSbaaSqaa8qaca aIWaaapaqabaaaaa@330D@  и I MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadMeapaWaaSbaaSqaamrr1n gBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbaceaWdbiab=zSiLdWd aeqaaaaa@3E2E@ , сливаются воедино. При этом при сколь угодно больших μ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabeY7aTbaa@32E1@  это решение не сольется с решением, содержащим I π MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadMeapaWaaSbaaSqaa8qacq aHapaCa8aabeaaaaa@3410@ , см. рис. 6 справа.

Выполненный анализ позволяет утверждать, что не существует значения коэффициента трения, при котором любой точке обруча соответствует относительное равновесие бусинки. Если φn: λ n φ n =0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabeU7aS9aadaWgaaWcbaWdbi aad6gaa8aabeaak8qadaqadaWdaeaapeGaeqOXdO2damaaBaaaleaa peGaamOBaaWdaeqaaaGcpeGaayjkaiaawMcaaiabg2da9iaaicdaaa a@3AD2@ , то всегда существуют окрестности φn, где бусинка не может находиться в равновесии относительно обруча.

4. Скольжение. В условиях скольжения сила трения определяется равенством

T=μ N v v MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaahsfacqGH9aqpcqGHsislcq aH8oqBdaabdaWdaeaapeGaaCOtaaGaay5bSlaawIa7amaalaaapaqa a8qacaWH2baapaqaa8qadaabdaWdaeaapeGaaCODaaGaay5bSlaawI a7aaaaaaa@3F56@ ,

и для различных значений постоянной циклического интеграла p ψ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadchapaWaaSbaaSqaa8qacq aHipqEa8aabeaaaaa@3448@  движение бусинки относительно обруча описывается уравнением

φ ¨ + ω 2 P φ sinφ= T ml MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiqbeA8aQzaadaGaey4kaSIaeq yYdC3damaaCaaaleqabaWdbiaaikdaaaGccaWGqbWaaeWaa8aabaWd biabeA8aQbGaayjkaiaawMcaaiaabohacaqGPbGaaeOBaiabeA8aQj abg2da9maalaaapaqaa8qacaWGubaapaqaa8qacaWGTbGaeS4eHWga aaaa@43CC@ ,

где

  T=sign φ ˙ μml ω 2 c 2 4 ϰ 2 cos 2 φ (ϰ+ sin 2 φ) 4 φ ˙ 2 + + ω 2 c 2 sin 2 φ (ϰ+ sin 2 φ) 2 + ω 2 cosφ+ φ ˙ 2 2 . MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadsfacqGH9aqpcqGHsislca qGZbGaaeyAaiaabEgacaqGUbWaaeWaa8aabaWdbiqbeA8aQ9aagaGa aaWdbiaawIcacaGLPaaacqaH8oqBcaWGTbGaeS4eHW2aaOaaa8aaea qabeaapeGaeqyYdC3damaaCaaaleqabaWdbiaaikdaaaGccaWGJbWd amaaCaaaleqabaWdbiaaikdaaaGcdaWcaaWdaeaapeGaaGinamrr1n gBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbaceaGae8h8dK=damaa CaaaleqabaWdbiaaikdaaaGcciGGJbGaai4BaiaacohapaWaaWbaaS qabeaapeGaaGOmaaaakiabeA8aQbWdaeaapeGaaiikaiab=b=a5lab gUcaRiGacohacaGGPbGaaiOBa8aadaahaaWcbeqaa8qacaaIYaaaaO GaeqOXdOMaaiyka8aadaahaaWcbeqaa8qacaaI0aaaaaaakiabgwSi xlqbeA8aQ9aagaGaamaaCaaaleqabaWdbiaaikdaaaGccqGHRaWkae aacqGHRaWkcaaMc8+aaeWaa8aabaWdbiabeM8a39aadaahaaWcbeqa a8qacaaIYaaaaOGaam4ya8aadaahaaWcbeqaa8qacaaIYaaaaOWaaS aaa8aabaWdbiGacohacaGGPbGaaiOBa8aadaahaaWcbeqaa8qacaaI YaaaaOGaeqOXdOgapaqaa8qacaGGOaGae8h8dKVaey4kaSIaci4Cai aacMgacaGGUbWdamaaCaaaleqabaWdbiaaikdaaaGccqaHgpGAcaGG PaWdamaaCaaaleqabaWdbiaaikdaaaaaaOGaey4kaSIaeqyYdC3dam aaCaaaleqabaWdbiaaikdaaaGcciGGJbGaai4BaiaacohacqaHgpGA cqGHRaWkcuaHgpGApaGbaiaadaahaaWcbeqaa8qacaaIYaaaaaGcca GLOaGaayzkaaWdamaaCaaaleqabaWdbiaaikdaaaGcpaGaaiOlaaaa l8qabeaaaaa@918F@

Построим характерные фазовые портреты на плоскости φ, φ ˙ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbmaabmaapaqaa8qacqaHgpGAca GGSaGafqOXdOMbaiaaaiaawIcacaGLPaaaaaa@3706@  для до- и постбифуркационных значений параметров системы, рис. 7 и 8. На рис. 9 и 10 представлены в увеличенном масштабе окрестности множеств неизолированных решений.

 

Рис. 7. Фазовый портрет для добифуркационных сочетаний параметров.

 

Рис. 8. Фазовый портрет для постбифуркационных сочетаний параметров.

 

Рис. 9. Окрестность множеств I0 при постбифуркационных сочетаниях параметров.

 

Рис. 10. Окрестность множеств I при постбифуркационных сочетаниях параметров.

 

Анализ бифуркационных диаграмм показывает, что при всех начальных условиях бусинка приходит в положение относительного равновесия за конечное время. Наличие интеграла площадей гарантирует, что при этом дальнейшего рассеяния энергии происходить не будет и обруч продолжит вращаться с постоянной угловой скоростью.

5. Заключительные замечания. В рассмотренной задаче о движении бусинки по шероховатому круглому массивному обручу, свободно вращающемуся вокруг своего вертикального диаметра, найдено множество неизолированных установившихся движений и исследована зависимость этого множества от существенных параметров задачи. Установлено, что топологически построенная бифуркационная диаграмма не отличается от подобной диаграммы, построенной ранее [1] в случае, когда обруч вращается вокруг вертикального диаметра с постоянной угловой скоростью. При различных значениях параметров задачи построены фазовые портреты. Численно показано, что на всех изучавшихся траекториях за конечное время бусинка приходит в положение относительного равновесия. При этом дальнейшего рассеяния энергии не происходит, а система продолжает вращение с постоянной угловой скоростью.

Заметим, что если ось вращения обруча наклонена относительно вертикали, то уже в случае скольжения бусинки без трения уравнения движения становятся неинтегрируемыми, а движение бусинки оказывается гораздо более богатым на динамические эффекты [16]. Исследование динамики такой системы при наличии трения требует отдельного исследования.

Исследование Е.А. Никоновой (пункты 3 и 4) выполнено за счет гранта Российского научного фонда № 24-11-20009, https://rscf.ru/project/24-11-20009/


1 В работе [1] при описании скольжения аналог λb во внимание не принимался.

×

Авторлар туралы

А. Burov

Federal Research Center “Computer Science and Control” of the Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: jtm@yandex.ru
Ресей, Moscow

V. Nikonov

Federal Research Center “Computer Science and Control” of the Russian Academy of Sciences

Email: nikon_v@list.ru
Ресей, Moscow

Е. Nikonova

Federal Research Center “Computer Science and Control” of the Russian Academy of Sciences; Sirius University of Science and Technology Sirius Federal territory

Email: nikonova.ekaterina.a@gmail.com
Ресей, Moscow; Sochi

Әдебиет тізімі

  1. Burov A.A. On bifurcations of relative equilibria of a heavy bead sliding with dry friction on a rotating circle // Acta Mechanica. 2010. V. 212. № 3–4. P. 349–354. https://doi.org/10.1007/s00707-009-0265-1
  2. Krementulo V.V. Stability of a gyroscope having a vertical axis of the outer ring with dry friction in the gimbal axes taken into account // J. Appl. Math. Mech. 1960. V. 24. № 3. P. 843–849.
  3. Van de Wouw N., Leine R.I. Stability of stationary sets in nonlinear systems with set-valued friction // Proc. 45th IEEE Conf. Decision and Control and European Control Conf. (CDC2006), San Diego, USA, 2006. P. 3765–3770.
  4. Leine R.I., van de Wouw N. Stability and convergence of mechanical systems with unilateral constraints. Lecture Notes in Applied and Computational Mechanics. Berlin: Springer, 2008. V. 36. 236 p.
  5. Leine R.I., van Campen D.H. Bifurcation phenomena in non-smooth dynamical systems // Eur. J. Mechanics A. Solids. 2006. V. 25. P. 595–616.
  6. Leine R.I. Bifurcations of equilibria in non-smooth continuous systems // Physica D. 2006. V. 223. P. 121–137.
  7. Ivanov A. Bifurcations in systems with friction: Basic models and methods // Regul. Chaotic Dyn. 2009. V. 14. № 6. P. 656–672.
  8. Ivanov A.P. Fundamentals of the theory of systems with friction. M.‒Izhevsk: SIC “Regular and chaotic dynamics”, Izhevsk Institute of Computer Science, 2011. 304 p. (in Russian).
  9. Karapetian A.V. Stability of stationary motions. M.: Editorial URSS, 1998. 168 p. (in Russian).
  10. Karapetian A.V. Stability and bifurcation of motions. M.: Publishing House of the Moscow University, 2020. 186 p. (in Russian).
  11. Chetaev N.G. Stability of motions. M.: Nauka. 1965. 176 p. (in Russian).
  12. Rumiantsev V.V. On the stability of steady motions // J. Appl. Math. Mech. 1966. V. 30. № 5. P. 1090–1103.
  13. Vozlinskii V.I. On the relations between the bifurcation of the equilibria of conservative systems and the stability distribution on the equilibria curve // J. Appl. Math. Mech. 1967. V. 31. № 2. P. 418–427.
  14. Vozlinskii V.I. On the stability of points of equilibrium branching // J. Appl. Math. Mech. 1978. V. 42. № 2. P. 270–279.
  15. Rubanovsky V.N., Samsonov V.A. Stability of stationary motions in examples and problems. M.: Nauka, 1988. 303 p. (in Russian).
  16. Burov A.A., Nikonov V.I. Motion of a heavy bead along a circular hoop rotating around an inclined axis // Int. J. Non-Linear Mech. 2021.V. 137. Article 103791. https://doi.org/10.1016/j.ijnonlinmec.2021.103791

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Bead on a hoop.

Жүктеу (6KB)
3. Fig. 2. Bifurcation diagrams in the absence of friction for different combinations of parameters: on the plane on the left; on the plane on the right.

Жүктеу (21KB)
4. Fig. 3. Regions of sign constancy of submodular expressions of inequality (3.4).

Жүктеу (10KB)
5. Fig. 4. Subregions of regions corresponding to solutions of inequality (3.4).

Жүктеу (38KB)
6. Fig. 5. Bifurcation diagram in the presence of friction for different combinations of parameters. Here , .

Жүктеу (29KB)
7. Fig. 6. Dependence on the friction coefficient: left, center, right.

Жүктеу (15KB)
8. Fig. 7. Phase portrait for pre-bifurcation combinations of parameters.

Жүктеу (48KB)
9. Fig. 8. Phase portrait for post-bifurcation combinations of parameters.

Жүктеу (38KB)
10. Fig. 9. Neighborhood of sets for post-bifurcation combinations of parameters.

Жүктеу (19KB)
11. Fig. 10. Neighborhood of sets for post-bifurcation combinations of parameters.

Жүктеу (20KB)

© Russian Academy of Sciences, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».