
Вестник Воронежского государственного технического университета. Т. 21. № 4. 2025 
   

185 

DOI 10.36622/1729-6501.2025.21.4.028 
УДК 621.311.68 
 

ОБРАТНОХОДОВЫЙ ПРЕОБРАЗОВАТЕЛЬ НАПРЯЖЕНИЯ ДЛЯ ПИТАНИЯ 
ПОДВИЖНЫХ ОБЪЕКТОВ ПО ТОНКИМ ПРОВОДНЫМ ЛИНИЯМ 

М.А. Ромащенко, Н.Ю. Веретенников, А.В. Гудков 
 

Воронежский государственный технический университет, г. Воронеж, Россия 
 

Аннотация: рассматривается задача передачи мощности порядка 60 Вт от аккумуляторного источника с примене-
нием тонкого проводника для обеспечения питанием подвижных объектов. Проведен анализ потерь в линии и показано, 
что эффективным способом их снижения является повышение питающего напряжения. Для этого предлагается исполь-
зовать импульсный преобразователь постоянного напряжения выполненный по топологии обратноходового преобразо-
вателя. Показано, что основным элементом такого преобразователя является магнитный компонент (высокочастотный 
трансформатор) и выполнен расчет его параметров, обеспечивающих работу в граничном режиме тока. Для подтвержде-
ния корректности проведенного анализа и выбранных рабочих режимов преобразователя была синтезирована его модель 
в среде схемотехнического проектирования LTspice. Представлены полученные по результатам выполненного моделиро-
вания осциллограммы токов первичной и вторичной обмоток трансформатора, а также осциллограммы напряжений на 
силовом транзисторе и выпрямительном диоде. Установлено, что предложенное решение позволяет повысить напряже-
ние линии до 110 В, тем самым снизить токи и уменьшить потери мощности при длине линии до 400 м. Полученные ре-
зультаты подтверждают корректность расчетов и демонстрируют эффективность применения обратноходовых преобра-
зователей в системах питания подвижных объектов при помощи тонких проводных линий 
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Введение1 
 

Передача электрической энергии по про-
водным линиям остаётся одной из ключевых 
задач современной электроники. В условиях, 
когда требуется обеспечить питание подвиж-
ных объектов при ограниченных габаритах и 
весе проводников возникает необходимость 
использования тонких проводов. Однако 
уменьшение сечения проводника неизбежно 
приводит к росту его активного сопротивления, 
что влечёт за собой значительные потери мощ-
ности, падение напряжения на линии и сниже-
ние эффективности всей системы. 

Одним из способов повышения эффектив-
ности передачи энергии на расстояние является 
использование преобразователей постоянного 
тока, позволяющих увеличить напряжение на 
линии и, соответственно, уменьшить ток, а зна-
чит и тепловые потери в проводе. Среди раз-
личных топологий преобразователей особый 
интерес представляет обратноходовой преобра-
зователь отличающийся простотой конструк-
ции, возможностью обеспечения гальваниче-
ской развязки и эффективной работы в широ-
ком диапазоне напряжений питания. 
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Целью данной статьи является подробное 
рассмотрение практических аспектов проекти-
рования системы передачи энергии для под-
вижных объектов по тонкой проводной линии 
питания с использованием обратноходового 
преобразователя. 

 
Анализ потерь в питающей линии 

 
Рассмотрим процесс передачи электриче-

ской энергии от аккумуляторной батареи (АКБ) 
с номинальным напряжением 24 В, расположен-
ной на базовой станции управления подвижным 
объектом, посредством кабеля Ethernet на рас-
стояние 400 м. Нагрузкой является потребитель 
мощностью 50 Вт. Для организации линии пита-
ния задействуются две витые пары сечением 
жилы 0,5 мм² каждая. В результате эквивалент-
ное сечение проводников S, используемых для 
подачи напряжения и обратного проводника 
(нулевой шины), составляет 1 мм². При этом эк-
вивалентное расстояние l, используемое для 
расчетов, равняется 800 м. Таким образом, со-
противление шины питания равняется 

 

ܴ௕௨௦ ൌ ߩ
௟

ௌ
ൌ 14,4	Ом,   (1) 

 

где ρ = 0,018·10-6 Ом·м. — удельное сопротив-
ление меди. 
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Согласно стандарту IEEE 802.3bt техноло-
гии PoE поддерживаемое напряжение на шине 
питания достигает 57 В [1]. В то же время, для 
кабелей категории 5 установлено предельно 
допустимое значение рабочего напряжения 125 
В. Следовательно, в рассматриваемом случае с 
целью снижения токов в проводниках, и, как 
следствие, омических потерь целесообразно 
повысить напряжение питания до уровня 110 В. 
В таком случае ток в линии должен удовлетво-
ряющий условию 
 

нܲ ൌ ௕௨௦ሺܫ ௕ܸ௨௦ െ  ௕௨௦ܴ௕௨௦ሻ,   (2)ܫ
 
где Pн – мощность нагрузки,  
      Ibus – ток линии питания,  
      Vbus – напряжение питания. 

Проводя анализ (2) было получено Ibus = 
0,487 А, что соответствует падению напряжения 
на линии 7 В, и напряжению на нагрузке – 
103 В. Таким образом, потери мощности в линии 
питания составят 3,41 Вт или 6,83 % от началь-
ной мощности источника, что можно считать 
допустимым для питающей линии такой длины. 
 
Расчет обратноходового трансформатора 

 
В качестве повышающего преобразователя 

напряжения АКБ до напряжения промежуточ-
ной шины рассмотрим обратноходовый преоб-
разователь с выходным напряжением 110 В. 
Для учета возможных потерь в понижающем 
преобразователе на стороне потребителя, зада-
дим выходную мощность равную 60 Вт. По-
скольку напряжение на выводах АКБ изменяет-
ся в процессе зарядно-разрядных циклов, выбе-
рем диапазон входных напряжений преобразо-
вателя в пределах от 18 до 36 В. 

Ключевым элементом обратноходового 
преобразователя является магнитный компонент 
(обычно трансформатор со зазором в магнито-
проводе), который работает в различных режи-
мах в зависимости от параметров нагрузки, час-
тоты переключения и коэффициента заполнения 
импульса управляющего сигнала ШИМ (широт-
но-импульсного модулятора) [2]. Можно выде-
лить три режима работы: режим разрывных то-
ков (Discontinuous Conduction Mode, DCM), не-
прерывного тока (Continuous Conduction Mode, 
CCM) и граничный режим (Boundary Conduction 
Mode, BCM) [3, 4]. 

При расчете магнитного компонента пре-
образователя выберем его индуктивность таким 
образом, чтобы при номинальном входном на-
пряжении 24 В и полной нагрузке обеспечивал-

ся граничный режим работы магнитного ком-
понента. Регулировочная характеристика об-
ратноходового преобразователя выглядит сле-
дующим образом 

 

V௢௨௧ ൌ
௜ܸ௡

݇௧௥

ܦ
1െ ܦ

െ ௙ܸ , 

 
где Vout — выходное напряжение преобразова-
теля, 
       Vin — входное напряжение преобразовате-
ля,  

       ݇௧௥ ൌ ଵܰ
ଶܰ

ൗ  — коэффициент трансформа-

ции,  
       D — коэффициент заполнения импульса 
ШИМ,  
       Vf — падение на выпрямительном диоде. 

Наиболее эффективный режим работы 
преобразователя с точки зрения пиковых и 
среднеквадратичных токов обеспечивается при 
D=0,5. Тогда можно найти коэффициент транс-
формации как 

 

݇௧௥ ൌ
௜ܸ௡

௢ܸ௨௧ ൅ ௙ܸ

ܦ
1െ ܦ

. 

 

Подставив значения Vin=24 В, Vout=110 В, 
Vf=0,6 В, D=0,5, получим оптимальное значение 
коэффициента трансформации ktr = 0,217. 

В [5] показан способ расчета трансформа-
тора с использованием накопленной в магнито-
проводе энергии. Согласно данному подходу, 
вся энергия, накопленная в сердечнике в течение 
открытого состояния транзистора (время им-
пульса), должна быть полностью передана за 
время закрытого состояния транзистора (время 
паузы). В настоящей работе предлагается ис-
пользовать другой метод. Поскольку ток в маг-
нитном компоненте в момент начала нового так-
та работы должен быть равен нулю, рассчитаем 
токи в обмотках трансформатора и выберем не-
обходимые значения индуктивностей обмоток. 

Если пренебречь потерями в преобразова-
теле, то средний входной ток можно опреде-
лить как 

 

௜௡ܫ ൌ
௢ܲ௨௧

௜ܸ௡
, 

 
где Pout – выходная мощность преобразователя. 
Для нашего случая средний входной ток равен 
2,5 А. 

Поскольку ток в первичной обмотке начи-
нается из нуля, то пиковый ток в первичной 
обмотке определяется выражением 
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௣௥௜	௣௘௔௞ܫ ൌ
௜௡ܫ2
ܦ
. 

 

Необходимая индуктивность первичной 
обмотки определяется условием достижения 
пикового значения тока Ipeak pri за время откры-
того состояния транзистора ton. Поскольку во 
время прямого такта (когда ключ открыт) к об-
мотке прикладывается постоянное напряжение 
Vin, то можно найти изменение тока как 

 

ܫ∆ ൌ ௜ܸ௡ݐ௢௡
௣௥௜ܮ

, 

 

где Lpri – индуктивность первичной обмотки 
трансформатора. Поскольку ток в обмотке в 
граничном режиме начинает нарастать с нуля, 
то ΔI=Ipeak pri. Отсюда  
 

௣௥௜ܮ ൌ
௜ܸ௡ݐ௢௡

௣௥௜	௣௘௔௞ܫ
. 

 

При выбранной частоте переключения 
транзистора fsw = 270 кГц и коэффициенте за-
полнения D = 0.5 время открытого состояния 
составит 
 

௢௡ݐ ൌ
ܦ

௦݂௪
ൌ 1,834	мкс. 

 

Подстановка численных значений дает 
требуемую индуктивность первичной обмотки 
Lpri=4,1 мкГн. Индуктивность вторичной об-
мотки определяется через коэффициент транс-
формации ktr: 

 

௦௘௖ܮ ൌ
௣௥௜ܮ
݇௧௥

ଶ ൌ 83	мкГн. 

 

Для реализации обратноходового транс-
форматора выберем сердечник с зазором RM8-
3C94-A250 [6, 7]. По известному значению па-
раметра ܣ௅ ൌ 250	 нГн витокଶൗ  найдем требуе-

мое количество витков первичной обмотки 
 

ଵܰ ൌ ඨ
௣௥௜ܮ
௅ܣ

. 

 

Округлив полученное значение до целого 
числа, получим 4 витка в первичной обмотке. 
Количество витков вторичной обмотки найдем 
исходя из требуемого коэффициента трансфор-
мации 
 

ଶܰ ൌ
ଵܰ

݇௧௥
. 

 

Округлив до целого, получим значение 18 
витков. Таким образом, фактический коэффи-
циент трансформации равен 0,22. 

Подставив количество витков N1, найдем 
фактическое значение индуктивности первич-
ной обмотки 

 

௣௥௜ܮ ൌ ௅ܣ ଵܰ
ଶ ൌ 4	мкГн. 

 
Аналогично пересчитаем Lsec = 81 мкГн. 
Для проверки корректности выбора сер-

дечника определяется размах индукции в маг-
нитопроводе, создаваемый в течение прямого 
такта работы преобразователя. Он рассчитыва-
ется по формуле 

 

ܤ∆ ൌ ௜ܸ௡ݐ௢௡
௘ܣ ଵܰ

, 

 
где Ae = 63 мм2 — эффективная площадь сече-
ния сердечника. В рассматриваемом случае 
расчетный размах индукции равен 0,168 Тл, что 
намного меньше индукции насыщения мате-
риала. 

Определим максимальное напряжение на 
силовом транзисторе и диоде. Во время прямо-
го такта, когда транзистор открыт, выпрями-
тельный диод не проводит ток. В это время к 
нему прикладывается напряжение 

 

௏ܸ஽ ൌ
௜ܸ௡

݇௧௥
൅ ௢ܸ௨௧ . 

 
В интервале закрытого состояния транзи-

стора на нем формируется напряжение 
 

௏்ܸ ൌ ௜ܸ௡ ൅ ൫ ௢ܸ௨௧ ൅ ௙ܸ൯݇௧௥ . 
 
Подставив максимальное входное напря-

жение 36 В получим VVT = 59,27 В, VVD = 281,1 В. 
Следует отметить, что приведенные значе-

ния являются теоретическими и не учитывают 
перенапряжения, возникающие при коммутации 
из-за индуктивности рассеяния. В реальных ус-
ловиях амплитуда выбросов напряжения на си-
ловом транзисторе и диоде может составлять 
20–50 % от расчетного значения. Таким образом, 
для транзистора следует закладывать рабочее 
напряжение 100 В, а для диода — 400 В. 

В качестве дополнительных мер защиты от 
перенапряжений рекомендуется применение 
схем демпфирования, таких как RCD-снаббер 
или RC-демпфер), что позволит ограничить вы-
бросы и снизить нагрузку на силовые компо-
ненты. 
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FLYBACK VOLTAGE CONVERTER FOR POWER SUPPLY 
OF MOVING OBJECTS VIA THIN WIRE LINES 

 
M.A. Romashchenko, N.Yu. Veretennikov, A.V. Gudkov 

 
Voronezh State Technical University, Voronezh, Russia 

 
Abstract: this paper examines the problem of transmitting approximately 60 W of power from a battery source using a 

thin conductor to power moving objects. We conducted an analysis of line losses, demonstrating that increasing the supply 
voltage is an effective way to reduce them. We propose a pulsed DC-DC converter implemented using a flyback converter to-
pology for this purpose. We show that the key element of such a converter is a magnetic component (a high-frequency trans-
former), and its parameters are calculated to ensure operation in the current limit mode. To validate the analysis and the select-
ed operating modes of the converter, we synthesized a model in the LTspice circuit design environment. We give the 
oscillograms of the currents in the primary and secondary windings of the transformer, as well as oscillograms of the voltages 
on the power transistor and rectifier diode, obtained from the simulation results. We found that the proposed solution allows 
for increasing line voltage to 110 V, thereby reducing currents and power losses over line lengths of up to 400 m. The results 
confirm the accuracy of the calculations and demonstrate the effectiveness of flyback converters in power supply systems for 
mobile objects using thin wire lines 

 
Key words: flyback converter, moving objects, switching power supplies, thin wire line 
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