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ОЦЕНКА СОБСТВЕННОЙ ХАРАКТЕРИСТИКИ  

КИБЕРФИЗИЧЕСКОЙ СИСТЕМЫ МЕТОДОМ  

СЕТЕВЫХ ИСЧИСЛЕНИЙ1 

Промыслов В. Г.2, Семенков К. В.3, Жарко Е. Ф.4 

(ФГБУН Институт проблем управления  

им. В.А. Трапезникова РАН, Москва) 

Рассматриваются подходы к решению частной задачи обеспечения безопасно-

сти киберфизических систем, к которым относятся многие объекты крити-

ческой информационной инфраструктуры, включая такие сферы как транс-

порт, связь, энергетика и промышленность, а именно, к оценке доступности 

как максимальной задержки передачи и обработки данных. Анализируются 

способы оценки собственной характеристики киберфизических систем – так 

называемой кривой обслуживания, которая представляет собой детерминиро-

ванные ограничения, связывающие вход системы и минимальный поток на вы-

ходе системы. Оценка кривой обслуживания рассматривается в рамках ме-

тода сетевых исчислений и подходов мини- и макси-плюс алгебры, которые со-

ставляют математическую основу метода. Для оценки кривой обслуживания 

взят один ранее разработанный метод, использующий свойство дуальности 

преобразований мини- и макси-плюс алгебры, и предложен новый метод, осно-

ванный на связи двух видов кривых обслуживания – мини- и макси-кривой обслу-

живания. Методы рассматриваются с учетом их применения для реальных си-

стем и существующих ограничений на возможности измерения, в частности, 

конечности временного интервала измерений. На основе анализа двух методов 

делается вывод, что каждый из них дает возможную кривую обслуживания, 

но они требуют дополнительных данных для того, чтобы полученная кривая 

соответствовала режиму максимального быстродействия системы. 

Ключевые слова: киберфизическая система, моделирование, Network 

Calculus, теория сетевых исчислений, мини- и макси-плюс алгебра, кри-

вая обслуживания, доступность, безопасность. 

1. Введение 

В современном мире киберфизические системы являются ча-

стью систем, выполняющих ключевые, критические функции 

                                           
1 Исследование выполнено за счет гранта Российского научного фонда  

№ 23-19-00338, https://rscf.ru/project/23-19-00338/. 
2 Виталий Георгиевич Промыслов, к.ф.-м.н., в.н.с. (vp@ipu.ru). 
3 Кирилл Валерьевич Семенков, к.ф.-м.н., с.н.с. (semenkovk@ipu.ru). 
4 Елена Филипповна Жарко, к.т.н., с.н.с. (zharko@ipu.ru). 
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для человека. Обеспечение безопасности управления в таких си-

стемах – это одна из ключевых задач, поэтому оценку и контроль 

характеристик безопасности нужно вести на всех этапах жизнен-

ного цикла таких систем. Одной из характеристик безопасности 

является доступность, и метрикой доступности может служить 

задержка передачи и обработки данных [4]. Для интеллектуаль-

ных транспортных систем, в приложении к которым авторы ре-

шают проблему оценки характеристик безопасности, доступ-

ность играет ключевое значение, особенно при использовании 

внешних каналов управления (оператор, диспетчер, элементы до-

рожной инфраструктуры).  

Её оценка чаще всего проводится методами статистического 

анализа и теории систем массового обслуживания (СМО) [1, 2]. 

Однако для измерения характеристик киберфизических систем 

статистические методы оценки не всегда хорошо подходят. С од-

ной стороны, трудно собрать корректную статистику, так как до-

полнительные тестовые программы, запущенные в системе, мо-

гут исказить результат. С другой стороны, процессы в киберфи-

зических системах имеют специфические статистические свой-

ства, они часто описываются сложными функциями распределе-

ния, например, многомодовыми или с тяжелыми хвостами [3]. 

В качестве одной из альтернатив статистическим методам 

при расчете характеристик потоков данных в компьютерных се-

тях применяется нестатистический метод анализа детерминиро-

ванных систем Network Calculus, или теория сетевых исчислений 

(ТСИ) [9, 10]. Он базируется на мини-плюс алгебре [16] и во мно-

гих случаях позволяет линеаризовать системы, являющиеся не-

линейными в «обычной» алгебре, а также получать детерминиро-

ванные оценки таких важных параметров систем как задержка 

при обработке или размер буфера данных. Детерминированность 

получаемых оценок – это важный фактор, определяющий прак-

тическую привлекательность метода.  

В инженерных задачах требования и критерии часто выража-

ются в виде детерминированных предельных величин, (например, 

максимального времени прохождения информации), т.е. характе-

ристик, которые непосредственно определяются методами ТСИ. 

Поэтому алгоритмы ТСИ могут быть частью средств монито-
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ринга безопасности системы и непрерывно выдавать эксплуати-

рующему систему персоналу диагностические данные о доступ-

ности и, что ещё важнее, прогноз доступности на некоторое 

время вперёд. 

Для расчета параметров системы ТСИ использует специфи-

ческие характеристики системы: кривую поступления (конверт) 

потока данных и кривую обслуживания [14]. Они не являются 

«обычными» характеристиками, которые можно найти в пас-

порте на систему, и их необходимо вычислить по имеющимся 

входным данным: кумулятивным (интегральным) кривым пото-

ков, обрабатываемых в системе. Кривая поступления ограничи-

вает изменение кумулятивного потока на временном интервале. 

Кривая обслуживания в ТСИ является аналогом передаточной 

функции системы в радиофизике – это внутренняя характери-

стика системы, определяющая реакцию системы на входной по-

ток. Кривая поступления совместно с кривой обслуживания за-

дают границы для расчета параметров системы. 

Часто выделяют верхнюю и нижнюю кривые поступления 

и минимальную и максимальную кривую обслуживания. Однако 

для практического использования наиболее интересны верхняя 

кривая поступления и минимальная кривая обслуживания, так 

как из них можно оценить сверху время прохождения данных 

в системе и параметры буферизации. Формальное и детальное 

описание кривых поступления и обслуживания и дискуссию по 

ним можно найти в работе [17]. 

В литературе основное внимание уделяется вычислению 

кривой поступления. Данная тенденция, видимо, определяется 

двумя основными факторами: во-первых, кривая поступления 

в отличие от кривой обслуживания может использоваться само-

стоятельно, например, для диагностики состояния, и, во-вторых, 

для вычисления минимальной (верхней) кривой поступления, ко-

торая имеет наибольший практический интерес, существует хо-

рошо обоснованная формула [12]. Основной проблемой для рас-

чета кривой поступления является сложность O(N2), где N – раз-

мер выборки, что существенно замедляет расчеты на больших 

выборках или, что то же самое, на длительных интервалах непре-

рывной эксплуатации. Известен по крайней мере один алгоритм 
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быстрого приближенного вычисления кривой поступления, обла-

дающий сложностью O(N) [7], хотя для указанного алгоритма 

проблема точности полученной оценки и выбора начального па-

раметра всё ещё открыты. 

Оценка минимальной кривой обслуживания (далее слово 

«минимальная» мы, как правило, будем опускать) является более 

сложной задачей, и для нее пока нам не известно полного теоре-

тического обоснования или общепринятого алгоритма. Особен-

ностью ТСИ является то, что связь между входом и выходам си-

стемы часто задается неравенствами, поэтому в качестве кривой 

обслуживания необходимо рассматривать множество решений, 

удовлетворяющих неравенству, т.е. решение не является един-

ственным, а кривая обслуживания, полученная на конкретной ре-

ализации процесса обработки, не обязательно станет «наилуч-

шей». 

Подробный обзор оценки кривых обслуживания как в детер-

минированном, так и в стохастическом ТСИ был проведен Фид-

лером [11]. В его работе рассматриваются различные методы 

оценки кривой обслуживания и области их применения. Фидлер 

и некоторые другие авторы [5, 8] предлагают наряду с пассив-

ными подходами, связанными с анализом реализаций алгоритмов 

на конкретных системах обработки и восстановления кривой об-

служивания в аналитическом виде, использовать для оценки кри-

вых обслуживания и активные методы измерения с использова-

нием тестовых последовательностей. В работах рассматриваются 

активные методы измерения для систем специального вида, с раз-

деляемым ресурсом. Эти методы редко можно применить для 

оценки кривой обслуживания в системах потоковой передачи.  

Другой подход для проведения оценки кривой обслуживания 

с применением тестовой последовательности приведен в ста-

тье [3] и использует двойственность описания процессов в мини- 

и макси-плюс алгебре [13]. В работе [6] доказано слабое свойство 

макси-плюс алгебры, которое позволяет рассчитать кривую об-

служивания, если для системы известны входной и выходной по-

токи. Однако в работе приведены ограниченные сценарии приме-

нения доказанного свойства для оценки кривой обслуживания. 
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Отсутствие практических методов, позволяющих досто-

верно измерить кривую обслуживания реальной системы, явля-

ется преградой для применения ТСИ. Те немногие группы, кото-

рые работают с ТСИ (прежде всего группа Ле Будека), уделяют 

основное внимание теоретическим проблемам сетевых исчисле-

ний, почти не занимаясь вопросами измерения характеристик 

в реальных системах. 

Настоящая работа посвящена поиску эффективных практи-

ческих методов оценки кривой обслуживания [3]. В разделе 2 

приводятся необходимые теоретические обоснования известные 

в ТСИ для кривой обслуживания, и выводится ряд дополнитель-

ных следствий. Расчёты кривых обслуживания для простоты про-

водятся на примере кусочно-линейных входных и выходных по-

токов. Отдельно рассматривается проблема, которую мало затра-

гивают: выполнение расчётов на конечном интервале измере-

ний – и предлагаются способы проведения таких расчётов. В ра-

боте анализируются существующие методы оценки кривой об-

служивания и предлагается альтернативный метод, который при-

меним, если известны максимальная кривая обслуживания и кри-

вая поступления на входе и выходе системы. Проводится сравни-

тельный анализ корректности оценки кривой обслуживания 

двумя методами на примере системы с известной кривой обслу-

живания.  

2. Связь обратной макси-плюс свертки и мини-плюс 
свертки 

Будем рассматривать, как это принято в ТСИ, пассивную си-

стему без потерь, которая на входе получает некий поток инфор-

мации, обрабатывает его и выдает на выход. Под пассивной си-

стемой понимается такая система, где в выходной поток не «до-

бавляются» никакие данные, помимо полученных на входе и где 

выходной поток никогда не превышает входного. В реальной пас-

сивной системе без потерь в конечном итоге входной и выходной 

потоки сравняются, так как система обработает все входные дан-

ные. С математической точки зрения, в ТСИ потоком называется 

любая неотрицательная неубывающая функция, определенная 

при неотрицательном значении аргумента. 
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Для таких систем рассмотрим связь обратной макси-плюс 

свёртки (деконволюции) и мини-плюс свертки (конволюции) [3]: 

Свойство 1.  Пусть функции A(t) и B(t) являются потоками, 

а С(t) – некоторая функция. Тогда если 

(1)  C B A  ,  

то B A С  , где  ,  – операторы обратной макси-плюс 

свертки и мини-плюс свертки соответственно [12]. 

Для свойства 1 доказана его справедливость только в одну 

сторону. 

Проведём ряд вспомогательных рассуждений и для нагляд-

ности дальнейших выкладок развернем операторы   и  в свой-

стве 1: 

(2) 
 

 
0

0

( ) inf ( ) ( ) ,

( ) inf ( ) ( ) .

s

s t

C t B t s A s

B t A t s C s



 

  

  
 

Применительно к исследуемым ТСИ системам свойство 1 

связывает входной поток A(t), выходной поток B(t) и минималь-

ную кривую обслуживания C(t). В свойстве 1 левая часть первого 

неравенства может принимать отрицательные значения, что для 

кривой обслуживания реальной системы не имеет физического 

смысла. Поэтому в дальнейшем мы часто будем использовать 

только неотрицательные части соответствующих неубывающих 

функций f(t), обозначаемые как f(t)+. 

Рассмотрим более подробно некоторые простые следствия 

формулы (1), необходимые для практической оценки минималь-

ной кривой обслуживания. Они напрямую следуют из свойств 

макси-плюс свертки [13]. 

Свойство 2.  Пусть функции A и B – потоки и С B A  . То-

гда C  B. 

Доказательство непосредственно вытекает из анализа выра-

жения (2). В самом деле, в силу неотрицательности A(t) имеем 

B(t)  B(t+s) – A(s) при любых t  0 и s  0. Это неравенство будет 

справедливо и для точной нижней грани, а значит B(t)  C(t). Что 

и требовалось доказать. 

Отсюда также следует, что если A(t)  B(t) при t  0, 

то C(t)  A(t) при t  0. 
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Свойство 3.  Если A(t) и B(t) являются потоками, то C(t) – 

неубывающая функция. 

Доказательство:  

Так как A(t) и B(t) – потоки, то при t1  t2 и s  ℝ+: 

1 2( ) ( )   ( ) ( )B t s A s B t s A s     , 

следовательно 

   1 2
0 0

inf ( ) ( ) inf ( ) ( )
s s

B t s A s B t s A s
 

     , 

т.е. 1 2( )   ( )B A t B A t    для 0  t1  t2. Что и требовалось дока-

зать. 

Из того, что C(t) – неубывающая функция, следует, что C(t)+ 

также является потоком. 

Свойство 4.  Пусть функции A и B – потоки, A(0) = 0 

и B(0) = 0 и С B A  . Тогда будет верно неравенство B  A  C+.  

Доказательство: 

Согласно свойству 1, B  A  C, а по свойству (2), C  B. Так 

как B – поток, то B  C+. По свойству мини-плюс свертки [12, 

п. 3.1.6] если f, g потоки и f(0) = 0, g(0) = 0, то f  g  f ⋀ g, т.е. 

A  C1
+  B. Что и требовалось доказать. 

Свойства (1)–(4) предлагается использовать для оценки кри-

вой обслуживания в рамках ТСИ.  

3. Примеры расчета обратной макси-плюс свертки 
для кусочно-линейных функций  

В практическом смысле свойство 1 означает, что если 

найдена некоторая кривая обслуживания    B A   , то она для 

данного A  обеспечит выполнение неравенства B'  B, где 

B' = A  β'. Иными словами, используя свойство 1, можно по 

входному и выходному потокам найти некоторую кривую обслу-

живания системы. К сожалению, нельзя гарантировать, что 

найденная кривая обслуживания будет «наилучшей», т.е. будет 

соответствовать сценарию наибольшего быстродействия си-

стемы, при сохранении ограничений на выходной поток, однако 

некоторые свойства системы она позволяет описать.  
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Проанализируем ограничения и применимость формулы (1) 

на примерах. В примерах будут использованы кусочно-линейные 

представления потоков и кривой обслуживания в виде аффинных 

функций: 

(3) 
  ,  ,

( )
0,  ;

R t T t T
t

t T


  
 


 

(4) ,

0,  0,
( )

,  0.
r b

t
t

rt b t



 

 
 

В формулах (3), (4) применительно к описанию систем по-

стоянные параметры T, R, r, b – это задержка и скорость обра-

ботки данных в системе, скорость поступления и максимальная 

неравномерность во входном потоке соответственно. 

Эти функции являются базовыми и могут быть найдены по-

чти в любой литературе по ТСИ, например, в [1, 11, 12]. Преиму-

щество кусочно-линейных функций по сравнению с гладкими за-

ключается в том, что результаты для них получаются аналитиче-

ски и нет необходимости прямого вычисления свёртки или обрат-

ной свёртки в мини/макси-плюс алгебре [18]. Недостатком явля-

ется то, что кусочно-линейные кривые могут дать более консер-

вативные результаты, чем гладкие функции, т.е. полученный диа-

пазон ограничений может быть шире. Для расчета в примерах ис-

пользовалась библиотека по ТСИ [15].  

Пример 1.  Пусть входной и выходной потоки описываются 

линейными функциями A(t) = kt + b1, B(t) = kt + b2, и k, b1, b2 – 

константы.  

Тогда обратная макси-плюс свертка имеет вид: 

 2 1 2 1
0

)inf ( ) ( .
s

k t s b ks b kt b b


        

Для случая b1 > b2 вид β(t) приведен на рис. 1. 

Данный пример может описывать систему, где скорость об-

работки близка скорости, с которой поступают данные, или равна 

ей.  

 



 

Управление большими системами. Выпуск 105 

14 

 
Рис. 1. Вид β(t) при k = 8, b1 = 5, b2 = 3  

Пример 2.  Пусть потоки заданы функциями вида 

A(t) = kt + b1, B(t) = k(t – T)+, и T, b1, k – константы. Тогда 

 

   

1
0

1 1 1
0

inf ( )

inf ( ) inf ( ) ( ) .

s

s T s T

k t T s ks b

k t T s ks b k t s ks b k t T b







  

    

           

 

Для случая b1  0 вид β(t) приведен на рис. 2.  

Данный пример является продолжением примера 1, однако 

здесь учитывается то, что в любой реальной системе обслужива-

ние входного потока происходит не мгновенно, и тогда выходной 

поток всегда будет иметь большую неравномерность, чем вход-

ной [10]. Полученная кривая обслуживания β'(t) не имеет физи-

ческого смысла при β' < 0, поэтому вместо неё в качестве кривой 

обслуживания следует использовать β'(t)+. 

Пример 3.  Пусть A(t) = k1t + b1, B(t) = k2(t – T)+, где k1, b1, 

k2 – константы и b1  0. Тогда 

 

   

2 1 1
0

2 1 1 2 1 1
0

2 1

1 1

inf ( )

inf ( ) inf ( )

,    ,

,

(

  ( ) .

)

s

s T s T

k t T s k s b

k t T s k s b k t s k s b

k b t T

k b tT T

t T

t







  

    

         

 
 

 




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В данном примере нарушается условие о пассивности си-

стемы, однако он будет использоваться далее для иллюстрации 

расчёта кривой обслуживании на ограниченном по времени 

наборе экспериментальных данных, что будет рассмотрено в раз-

деле 4.  

Вид β'(t) приведен на рис. 3. 

 
Рис. 2. Вид β(t) для случая k = 8, b1 = 0, T = 3  

 
Рис. 3. Вид β(t) случая k1=5, k2=9, b1 = 2 
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4. Эффект конечности экспериментальных данных 

Свойства и примеры, приведенные выше, рассматривались 

без учета того, что в любой реальной системе данные ограничены 

по времени. Поэтому полезно определить, как само понятие огра-

ничения на время для потока, так и рассмотреть свойства уравне-

ния (1) потока с ограниченным временем наблюдения. 

Определение.  Если функция потока A(t) ограничена по вре-

мени наблюдения [S, T], где S, T  0, то будем считать, что вне его 

она постоянна: A(t) = A(S) при t  S, и A(t) = A(T) при t > T, где A(S) 

и A(T) понимаются в смысле правого и левого пределов соответ-

ственно [12]. 

Рассмотрим проблему ограниченного времени при экспери-

ментальном измерении входного и выходного потока для уравне-

ния (1). 

Пусть имеются потоки A(t), B(t) с ограниченным временем 

наблюдения. Предположим, что система является пассивной. То-

гда если в какой-то момент времени v0 данные перестают посту-

пать на вход, то выходной поток через какое-то время станет по-

стоянным и равным входному потоку: A(t)t > v0 = Q, B(t)t > v1 = Q, 

B(t)t < v1  A(t), v1  v0.  

В таком случае кривая обслуживания системы будет равна 

нулю для t  v1. Это логически вытекает из понятия «минималь-

ности» кривой обслуживания. Для ограниченного во времени 

сигнала, по свойству 1, получим кривую обслуживания β(t)  0, 

что формально удовлетворяет правой части неравенства, но явля-

ется тривиальным результатом и в практическом смысле ничего 

не дает. 

Проблема измерения кривой обслуживания состоит в том, 

что, в отличие от входного и выходного потока, которые могут 

иметь конечную длительность, кривая обслуживания является 

свойством самой системы и должна быть определена для любого 

момента времени. Для её вычисления формально необходим 

входной сигнал бесконечной длительности, что невозможно в ре-

альности. Поэтому мы рассмотрим подходы, направленные на то, 

чтобы ослабить влияние конечного интервала измерений на 

оценку кривой обслуживания.  
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Опишем первый их них. Пусть входной и выходной потоки 

A(t) и B(t) – кусочно-линейные функции, определенные при t  0. 

Вместо выходного потока B будем обрабатывать приведен-

ный выходной поток B', который определим следующим образом: 

1

1

( ),  
(

,
)

,  .

B t t v
B t

t v


 

 



 

Введём 'B A   , β'  B'. Такой прием использует положе-

ние о бесконечности выходного потока при конечности входного 

потока, и работает наподобие фильтра, отсекающего влияние 

на кривую обслуживания работы системы на холостом ходу.  

Тогда, воспользовавшись свойством 1, зададим B'' = A  β' и, 

учитывая свойство (8) из работы [12] (f  gf ⋀ g для f(0) = 0, 

g(0) = 0), получим: 

B'' ≤ β' ⋀ A  B' ≥ B''  B'' ≤ B для t < v1. 

Таким образом, получена кривая обслуживания, которая 

удовлетворяет условию B  A  β для t  v1. Пример с иллюстра-

цией подхода показан на рис. 4. 

 
Рис. 4. Применение приведенного выходного потока для расчета 

кривой обслуживания 
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Второй подход заключается в том, чтобы остановить работу 

системы в момент времени v0  v1 и далее распространить состо-

яние системы в точке v0 на интервал (v0, +∞), сохраняя разность 

между входным и выходным потоком на том уровне, который 

был в точке v0.  

Пример для минимальной кривой обслуживания, иллюстри-

рующий второй подход, приведен на рис. 5. В нём для времени 
t > v0 используется линейная экстраполяция входного и выход-

ного потока. 

 
Рис. 5. Применение экстраполяции потоков для расчета кривой 

обслуживания 

5. Поток и кривая поступления в оценке кривой 
обслуживания 

Кроме уже указанных недостатков, применение уравнения (2) 

свойства (1) имеет особенность в том, что зависит от конкретной 

реализации потока, который всегда в реальном случае будет 

определен на ограниченной области определения и может вполне 
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оказаться, что выбранный интервал не в полной мере характери-

зует систему. 

Для того чтобы уйти от отдельной реализации потока, ТСИ 

предлагает описание в виде кривой поступления [9]. В зависимо-

сти от того, ограничен поток кривой поступления сверху или 

снизу, говорят о верхней или нижней кривой поступления по ана-

логии с максимальной и минимальной кривой обслуживания. 

Чтобы в формуле (2) перейти к кривой поступления, докажем 

свойство монотонности оператора макси-плюс обратной свёртки.  

Пусть A1(t), B1(t) и A2(t), B2(t) – потоки и B1(t)  B2(t), 

A1(t)  A2(t), тогда 1 1 2 1 B A B A    и 1 1 1 2 B A B A   . 

Для доказательства достаточно рассмотреть уравнение (2) 

для каждой пары функций, в первом случае это будет 

   1 1 2 1
0 0

)i n( (n i)f ) ( ) (f
s s

t s s t sB A B sA
 

   . Второй случай дока-

зывается аналогично. 

С учетом монотонности оператора обратной свертки можно 

сформулировать следствие для свойства 1: 

Свойство 1 (модифицированное). Пусть A(t), B(t) – входной 

и выходной потоки в системе, a, b – минимальная нижняя и верх-

няя кривые поступления для входного и выходного потоков со-

ответственно, β – кривая обслуживания системы. Тогда из 

 B A    следует, что b a   . 

Доказательство очевидно из свойства монотонности опера-

тора  . 

Применение кривой поступления вместо реализаций потока 

позволяет восстановить характеристики системы без прямых из-

мерений потоков, если известны оценки кривой поступления, по-

лученные, например, из теоретических предпосылок; можно за-

метить, что замена потоков на их огибающие приведет к менее 

консервативной оценке кривой обслуживания. 

6. Оценка минимальной кривой обслуживания 
для известных кривых поступления 

Подход к оценке кривой обслуживания, основанный на сла-

бом свойстве, связывающем обратную макси-плюс и прямую 
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мини-плюс свертки, который, как показано в разделах 2 и 3, 

имеет ограниченное применение на практике.  

Рассмотрим подход, который лишён указанных недостатков 

и позволяет получить оценку для кривой обслуживания, если из-

вестны максимальная кривая обслуживания и кривые поступления. 

Для этого приведем теорему, связывающую кривую поступ-

ления на входе и выходе системы с кривыми обслуживания [12, 

теорема 1.6.2].  

Теорема 1.  Пусть входной поток с кривой поступления α 

попадает в систему, имеющую максимальную кривую обслужи-

вания γ и кривую обслуживания β. Тогда выходной поток будет 

ограничен кривой поступления α* равной: 

(5)  *        .  

Доказательство. см. [12].  

Замечание 1.  Равенство левой и правой части в данной тео-

реме нужно понимать в контексте того, что результатом расчета 

для ТСИ является ограничение на некоторую характеристику. 

В доказательстве данной теоремы [12] указано, что 

(6)  *      , 

где α* минимальная верхняя («наилучшая») кривая поступления 

выходного потока, соответственно кривая поступления выход-

ного потока, рассчитанная по формуле (5) в общем случае, не яв-

ляется «наилучшей» кривой поступления. Физический смысл 

уравнения (5) состоит в том, что если известны кривая поступле-

ния входного потока и кривые обслуживания, то можно рассчи-

тать кривую поступления выходного потока. Однако данная кри-

вая поступления не является единственно возможной и «наилуч-

шим» в силу неравенства (6). 

На практике реальная кривая поступления часто неизвестна, 

и в качестве оценки кривой поступления для входного α и выход-

ного α* потоков и максимальной кривой обслуживания 𝛾 приме-

няют формулы 

(7) A A   ,  

(8) 
*   BB   , 

(9) B A    . 
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Следствие 1. Если на вход системы без потерь подается по-

ток A с кривой поступления α, на выходе регистрируется поток B 

с кривой поступления α*, определяемый теоремой 1, и макси-

мальная кривая обслуживания 𝛾 системы выше, чем минималь-

ная оценка γ' по формуле (9), то кривая обслуживания системы β 

будет не хуже, чем 

(10)   *      .  

Доказательство.  Рассмотрим уравнение (5). С учетом изо-

тонности операторов прямой и обратной свертки и условия γ ≥ γ', 

будет справедливо неравенство: α*  (α  γ')  β. 

Далее воспользуемся свойством мини-плюс алгебры, связы-

вающим прямую и обратные свертки [12]: если, f, g, h – потоки, 

то f  g  h тогда и только тогда, когда f  g  h. Сделаем замены 

h = β, f = (α  γ') , g = α* и учтём, что если α, γ – потоки то α  γ' – 

также поток. Тогда получим, что β  (α  γ') α*. Что и требова-

лось доказать.  

Уравнения (7), (8) дают минимальные оценки соответствую-

щих величин. Поэтому, с учетом замечания 1, полученная оценка 

для кривой обслуживания по формуле (10) не является строгой. 

Кривая поступления выходного потока, полученная, например, 

по формуле (8) на некоторой реализации входного потока, может 

не совпадать с кривой поступления, рассчитанной по формуле (6). 

Следовательно, минимальную кривую поступления выходного 

потока нельзя без предварительного критического анализа ис-

пользовать для расчета кривой обслуживания.  

Напомним, что на практике используются не кривые поступ-

ления и кривые обслуживания, рассчитанные на бесконечной об-

ласти по формулам прямой и обратной свертки, а их оценки, по-

лученные на конечном интервале времени. Исключением может 

быть лишь кривая поступления входного потока, где можно 

сформировать данные (входной поток) с наперед известными ха-

рактеристиками.  

Покажем, что в этом случае следствие 1 остается верным. 

Лемма 1.  Неравенство β  (α ⊗ γ') ⊘ α* в следствии 1 оста-

ется верным, если вместо истинных значений используются 
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оценки кривой поступления потока и максимальной кривой об-

служивания, полученные на ограниченном интервале наблюде-

ний. 

Доказательство. 
Пусть в системе в течение ограниченного времени наблюда-

ется поток A и выходной поток B. Обозначим потоки с областью 

определения t  [0, T] как A' и B'. Очевидно, что на этом интер-

вале A = A' и B = B'. 

В операции обратной свертки 

   
0

( ) sup ( ) ( )
u

f g t f t u g u


     включён и интервал t  [0, T]. 

Тогда A ⊘ A  A' ⊘ A',  

   B ⊘ B  B' ⊘ B',  

   B ⊘ A  B' ⊘ A'. 

Обозначим полученные оценки как α', α*', γ'; они также огра-

ничены по времени наблюдения на интервале t  [0, T].  

Так как операторы прямой и обратной свертки являются изо-

тонными [12] и операция обратной свертки включает интервал 

t  [0, T], то β ≥ (α ⊗ γ') ⊘ α* ≥ (α' ⊗ γ') ⊘ α*'. Что и требовалось 

доказать. 

На графике (рис. 6) приведен пример расчета кривой обслу-

живания с применением следствия 1 и леммы 1. В примере учи-

тывается ограничение на область определения потоков, время из-

мерений составляет 8 c.  

Серым цветом и толщиной выделены величины максималь-

ной задержки, вычисленной непосредственно по входному и вы-

ходному потоку (внизу графика) и по минимальной кривой об-

служивания и кривой поступления потока (вверху). Они состав-

ляют 1,5 c и 1,33 с соответственно. Отличие является результатом 

использования оценок кривой поступления входного потока 

и кривых обслуживания вместо их реальных значений. 

На практике для потоков с ограниченным временем наблю-

дения оценка для кривой обслуживания, полученная по след-

ствию 1, часто совпадает с минимальной оценкой максимальной 

кривой обслуживания. Это является результатом того, что для 

обоих величин рассчитывается минимальная граница, которая 

для неполных данных может совпадать. 
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Рис. 6. Пример расчета минимальной кривой обслуживания 

7. Сравнение методов оценки кривой обслуживания 

Приведем сравнительный анализ двух методов расчета кри-

вой обслуживания, для чего рассмотрим систему с известной за-

ранее кривой обслуживания. 

Пусть систему с истинной кривой обслуживания βtrue, описы-

ваемую аффинной функцией по формуле (3), подается тестовый 

входной поток и пусть на выходе системы регистрируется выход-

ной поток. По формулам (7), (8) рассчитаны оценки минималь-

ных кривых поступления потоков (входного α и выходного α*) и 

наименьшей максимальной кривой обслуживания γ' (9), исполь-

зуемой в методе (10).  

На рис. 7 приведены α и α* для трех реализаций входных по-

токов. Наклон огибающей у этих потоков соответственно больше 

наклона кривой обслуживания, равен ей и меньше её. Истинная 

кривая обслуживания βtrue приведена для сравнения. Далее для 

трех реализаций входных потоков по формуле (1) рассчитаны 
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кривые обслуживания β1 … β3 и аналогично по формуле (10) рас-

считаны кривые обслуживания β1a … β3a (рис. 7б); потоки в си-

стеме для последнего случая приводились к виду, учитывающему 

конечность интервала наблюдения (п. 4). 

 

  
a) б) 

Рис. 7. Пример расчета минимальной кривой обслуживания:  

а) истинная кривая обслуживания и три реализации кривых по-

ступлений; б) результаты расчета кривых обслуживания 

На рис. 7б видно, что кривые обслуживания, рассчитанные 

по формуле (10), дают более близкую оценку для кривой обслу-

живания.  

Однако, по нашим наблюдениям, на практике кривая обслу-

живания, рассчитанная по формуле (10), часто лежит левее реаль-

ной кривой обслуживания, что приводит к заниженной оценке ха-

рактеристик, как это было в примере на рис. 6. Это может быть 

связано с тем, что рассчитанные оценки кривой поступления ле-

жат выше минимальной верхней кривой поступления. Данного 

эффекта не наблюдалось для кривой обслуживания, посчитанной 

по формуле (1). 
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Также можно видеть, что если поток достаточно интенсивен, 

т.е. если на интервале наблюдения наклон его огибающей в ос-

новном больше, чем у кривой обслуживания, то, благодаря филь-

трующему свойству мини-плюс свертки, получается лучшее со-

ответствие с кривой обслуживания. 

8. Заключение 

Задача оценки характеристик киберфизической системы 

в контексте выбора ее архитектуры и обоснование безопасности 

обычно решается на начальных этапах создания системы, в про-

цессе ее разработки и испытания. Однако она и в дальнейшем не 

теряет своей актуальности и становится частью задач диагно-

стики, обеспечения надежности и поддержания безопасности 

функционирования системы.  

Одной из важнейших характеристик безопасности является 

доступность, а в качестве метрики доступности можно принять 

задержку передачи и обработки данных [4]. Например, в интел-

лектуальных транспортных системах, в приложении к которым 

решаются задачи оценки доступности, эта метрика в ряде прило-

жений естественными образом определяет доступность. Нельзя 

допустить неконтролируемого ухода задержки за верхние гра-

ницы; в случае превышения задержки система должна перейти 

в некоторое безопасное состояние: например, остановить транс-

портное средство, активизировать наиболее безопасный алго-

ритм автономного вождения и т.д. Это означает что временные 

параметры обработки информации и прохождения команд управ-

ления (задержки) в системах, обеспечивающих интеллектуаль-

ную транспортную среду, и им подобные должны быть заданы и 

должны постоянно контролироваться.  

Кривая обслуживания в ТСИ – это одна из основных харак-

теристик системы, определяющая её быстродействие, т.е. доступ-

ность, поэтому, зная кривую обслуживания, можно достаточно 

просто диагностировать состояние системы. Однако эта характе-

ристика очень трудна для оценки. 

В работе рассмотрено два метода оценки кривой обслужива-

ния. Первый метод основан на использовании слабого свойства 

мини-плюс свертки (формула (1), второй основан на доказанном 
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нами следствии из теоремы 1 (формула (10), которая связывает 

реализацию кривой поступления выходного потока с максималь-

ной кривой обслуживания и кривой поступления входного по-

тока. Оба метода позволяют оценить кривую обслуживания. Пер-

вый метод на практике дает более «правую», консервативную 

границу для кривой обслуживания и завышенную оценку за-

держку. Второй метод для экспериментов с известной кривой об-

служивания показал лучшее совпадение формы кривой обслужи-

вания, но для некоторых тестовых последовательностей приво-

дит к завышению оценки кривой обслуживания и занижению 

оценки задержки.  

Отдельно рассматривается проблема проведения расчётов 

по данным измерений на конечном интервале времени, так как 

формулы мини- и макси-плюс свёрток предполагают проведение 

расчётов на бесконечном интервале времени. В работе предлага-

ется два способа расчетов, которые не вносят искажений в имею-

щиеся данные. В обоих из них выходной поток доопределяется 

за пределами интервала измерений. В первом он заменяется на 

приведённый выходной поток с бесконечным большим значе-

нием за пределами интервала наблюдений. Во втором методе 

входной и выходной потоки экстраполируются за пределами ин-

тервала измерений. 

Мы полагаем, что пути к улучшению методов оценки кривой 

обслуживания лежат в использовании дополнительных допуще-

ний, например, о виде функций, к которым принадлежат кривые 

обслуживания, или об априорных свойствах системы. Еще одним 

способом улучшения оценки может стать применение тестирую-

щих потоков специального вида, с интенсивностью потока срав-

нимой с ожидаемым наклоном кривой обслуживания. 

Чтобы разработать практически применимую методику, 

необходимо провести значительный объем экспериментов, в том 

числе измерений на реальных объектах, что составляет задачу от-

дельного исследования. 
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ПРОГРАММНАЯ РЕАЛИЗАЦИЯ ЧИСЛЕННОГО 
МЕТОДА ЛАКСА – ФРИДРИХСА  

ДЛЯ МОДЕЛИРОВАНИЯ НЕСТАЦИОНАРНЫХ  
ЗАДАЧ ГАЗОВОЙ ДИНАМИКИ 

Малышев С. В.1 

(МГУ им. М. В. Ломоносова, Москва) 

Статья посвящена программной реализации численного метода Лакса –Фри-

дрихса для моделирования нестационарных задач газовой динамики. Рассмат-

ривается задача Сода в двух измерениях в следующей постановке: имеется за-

мкнутая ударная труба с пластинкой посередине, которая разделяет два газа 

с разными термодинамическими характеристиками. В начальный момент вре-

мени она моментально удаляется, газы при этом смешиваются. Появляется 

разрыв и возникает ударная волна. Цель работы заключается в нахождении 

термодинамических характеристик в произвольный момент времени и в про-

граммной реализации расчётов с помощью численного метода Лакса –Фри-

дрихса. Задача является актуальной в силу нехватки чётких вычислительных 

алгоритмов в сфере газовой динамики. Точность решения зависит от количе-

ства ячеек в сетке, на которую разбивается поверхность. В результате при-

ведён расчёт и численные значения для разных сеток, точное и численное ре-

шения сравнены в различных нормах. 

Ключевые слова: ударные волны, задача Сода, численный метод 

Лакса – Фридрихса. 

1. Введение 

Одним из основных методов исследования современных за-

дач газовой динамики является численное моделирование. Благо-

даря относительной простоте формулировок и алгоритмов, ши-

роко используются конечно-разностные схемы, такие как методы 

Лакса – Фридрихса, Маккормака, WENO-методы (weighted 

essentially non-oscillatory). Дополнительным достоинством этого 

класса схем является эффективность расширения одномерных 

формулировок на двух- и трехмерные задачи. К недостаткам ко-

нечно-разностных методов можно отнести сложность, а зачастую 

и невозможность их применения на неструктурированных рас-

четных сетках. Современные методы высокой точности – 
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в первую очередь WENO-методы – позволяют достигать произ-

вольно высоких порядков сходимости на гладких решениях 

за счет расширения разностного шаблона. 

В современной литературе разностные методы, как правило, 

формулируются в консервативной форме, связывающей измене-

ние значений консервативных физических величин в расчетном 

узле с так называемыми «потоками» этих величин между расчет-

ными узлами. Простейшим методом, допускающим такую фор-

мулировку, является метод Лакса – Фридрихса первого порядка 

аппроксимации [5]. 

В настоящей работе выполнена программная реализация ме-

тода Лакса – Фридрихса для одномерных нестационарных тече-

ний совершенного газа и проведена проверка сходимости числен-

ного решения к точному решению частного случая задачи о рас-

паде газодинамического разрыва. 

2. Постановка задачи 

Два совершенных газа находятся в одномерной трубе и раз-

делены тонкой мембраной (рис. 1). В начальный момент времени 

мембрана моментально удаляется. Дальнейшая эволюция пара-

метров газа – давления, плотности и скорости – описывается ис-

комыми функциями координаты и времени. Параметры газа 

слева от мембраны будем записывать с индексом 1, параметры 

газа справа – с индексом 2. Рассматриваются основные характе-

ристики газа такие как: плотность ρ, скорость газа относительно 

фиксированной системы отсчёта 𝑢, давление 𝑝 и показатель адиа-

баты 𝛾. С течением времени меняются первые три характери-

стики, которые и надо найти. 

 
Рис. 1. Состояние задачи в момент 𝑡 =  0 
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Рассматривается частный случай задачи Сода c одинако-

выми показателями адиабаты для обоих газов. Расчёты будут 

проводиться для следующих начальных условий (задача 

Сода [8]): при 𝑥 < 0 (𝜌, 𝑢, 𝑝) = (1,0;  0; 1,0), при 𝑥 ≥ 0   
(𝜌, 𝑢, 𝑝) = (0,125;  0;  0,1) 

Требуется узнать, какие будут состояния у плотности, скоро-

сти и давления в момент времени 𝑡 =  0,2 на отрезке  

𝑥 ∈ [−0,5;  0,5]. Как выяснится далее, для этого требуется произ-

вести расчёты для каждого момента времени с заданным шагом, 

начиная от 𝑡 =  0 до 𝑡 =  0,2.  

3. Описание математической модели 

Будем считать, что конфигурация течения после распада раз-

рыва известна заранее [9], тогда направо будет распространяться 

ударная волна, налево – волна разрежения, а между ними будет 

возникать контактный разрыв. 

Как видно из схемы течения (рис. 2), множество лучей, 

направленных влево – это волна разрежения. Пунктирная линия – 

это контактный разрыв. Нужно заметить, что слева и справа от 

него давление и скорость одинаковы, меняется только плотность. 

Последний сплошной луч – это ударная волна. 

 

Рис. 2. Схема течения (x-t-диаграмма) при распаде разрыва 

Для них можно выписать систему из пяти уравнений с пятью 

неизвестными: 𝑝3, 𝜌3, 𝑢3, 𝜌4  и 𝐷. Здесь 𝑝3 – давление газа между 
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волной разрежения и ударной волной; 𝜌3, 𝑢3 – плотность и ско-

рость между контактным разрывом и ударной волной; 𝜌4 – плот-

ность между волной разрежения и контактным разрывом; D – 

скорость скачка, бегущего вправо; a2, a4 – это скорости звука, 

равные √
𝛾𝑝2

𝜌2
 и √

𝛾𝑝3

𝜌4
  соответственно. 

 𝜌1(𝑢1 − 𝐷) = 𝜌3(𝑢3 − 𝐷), 
 𝑝1 + 𝜌1(𝑢1 − 𝐷)2 = 𝑝3 + 𝜌3(𝑢3 − 𝐷)2, 

 
(𝑢1−𝐷)2

2
+

𝛾

𝛾−1

𝑝1

𝜌1
=

(𝑢3−𝐷)2

2
+

𝛾

𝛾+1

𝑝3

𝜌3
 , 

 
𝑝3

𝜌4
𝛾 =

𝑝2

𝜌2
𝛾, 

 𝑢3 +
2𝑎4

𝛾−1
= 𝑢2 +

2𝑎2

𝛾−1
. 

Первые три уравнения – это соотношения на прямом скачке 

уплотнения, четвёртое – уравнение адиабаты Пуассона для волны 

разрежения Римана, а пятое – соотношение вдоль волны Римана 

для совершенного газа. 

Все они сводятся к одному уравнению для D: 

 𝑢(𝐷) +
2

𝛾−1

√𝛾𝑝2

1
𝛾

𝜌2
(𝑝(𝐷))

𝛾−1

2𝛾 − 𝑢2 −
2𝑎2

𝛾−1
= 0,  

где  

 𝑝(𝐷) =
2𝜌1(𝐷−𝑢1)2+(1−𝛾)𝑝1

𝛾+1
, 

 𝑢(𝐷) =
2𝐷2+(𝛾−3)𝑢1𝐷+(1−𝛾)𝑢1

2−2𝑎1
2

(𝛾+1)(𝐷−𝑢1)
. 

Его решение можно найти с любой наперед заданной точно-

стью, например, с помощью метода Ньютона. 

Полученное точное решение задачи о распаде разрыва 

можно использовать для проверки сходимости численного ме-

тода. 

4. Численное моделирование 

Для моделирования нестационарных течений совершенного 

газа используются уравнения Эйлера [5]. Три уравнения сохране-

ния, которые записаны в дифференциальной форме, – сохранения 

импульса, энергии и массы: 
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𝜕𝑈

𝜕𝑡
+

𝜕𝐹

𝜕𝑥
= 0, 

 𝑈 = (
𝜌

𝜌𝑢
𝐸

) , 𝐹 = (

𝜌

𝜌𝑢2 + 𝑝
(𝐸 + 𝑝)𝑢

) , 𝐸 =
𝑝

𝛾−1
+ 𝜌

𝑢2

2
. 

Вектор 𝑈 называется вектором консервативных величин, 

а вектор 𝐹 – потоками этих величин. При известных начальных 

условиях – значениях плотности, скорости и давления в каждой 

точке в начальный момент времени – требуется найти их значе-

ния в произвольный момент времени. В этом нам поможет чис-

ленный метод Лакса – Фридрихса. 

Расчетная область разбивается на 𝑁 + 1 расчетных узлов, 

расположенных равномерно. Чем больше будет расчётных узлов, 

тем выше ожидается точность вычислений. 

 

Рис. 3. Разностный шаблон метода Лакса-Фридрихса 

Схема работы численного метода следующая (рис. 3): бе-

рутся значения в (𝑘 + 1)-м и (𝑘 − 1)-м расчётном узле в n-й мо-

мент времени и по ним с помощью разностной формулы  

𝑈𝑘
𝑛+1 =

1

2
 (𝑈𝑘+1 

𝑛  + 𝑈𝑘−1
𝑛  ) −

∆𝑡

2∆𝑥
(𝐹(𝑈𝑘+1

𝑛 ) − 𝐹(𝑈𝑘−1
𝑛 )) 

находятся значения в 𝑘-м узле в (𝑛 + 1)-й момент времени. 

Допустимая величина шага по времени определяется усло-

вием Куранта – Фридрихса – Леви [1]. 

Так же, как и любой другой метод, метод Лакса –Фридрихса 

позволяет найти значения с определённой точностью. Нам также 
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требуется проверить, насколько численные результаты будут 

приближать наше точное решение. 

5. Структура программы   

Для решения поставленной задачи была разработана про-

грамма. Она составлена на языке Си и состоит из трёх модулей. 

Первый модуль – подсчёт численного решения. Вычисляется 

значения плотности, скорости и давления методом Лакса –Фри-

дрихса от начального момента времени до заданного. Затем они 

записываются в выходной файл, читаемый программой Paraview, 

в которой можно построить графики и удостовериться в правиль-

ности подсчётов. 

Второй модуль – вычисление точного решения. С помощью 

метода Ньютона производится подсчёт значений из алгебраиче-

ского уравнения. Результат записывается в выходной файл, кото-

рый также распознаётся программой Paraview. 

Третий модуль – вычисление норм разности значений, полу-

ченных на выходе первого и второго модулей. 

6. Сравнение точного и численного решения 
на разных сетках   

Разработанная программа позволяет находить решения при 

заданном количестве расчётных узлов. Рассмотрим их при раз-

ных сетках. На горизонтальной оси будем указывать коорди-

нату x. Красным цветом будем обозначать плотность 𝜌, чёрным 

цветом давление 𝑝, а синим цветом скорость 𝑢. 

Значения для сетки на 50 узлов приведены на рис. 4.1. Здесь 

мы можем наблюдать графики точного решения; точками обозна-

чены значения численного решения в узлах сетки. 

Как видно на рис. 4.1, нами получена неплохая точность ре-

шения, при этом образуют ступеньки, т.е. стоят попарно на одной 

строчке. Такое явление обусловлено так называемым «шахмат-

ным расщеплением» (odd-even decoupling) сетки при применении 

метода Лакса – Фридрихса, вызванным, в свою очередь, отсут-

ствием нижнего центрального узла в разностном шаблоне. 
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Графики на сетке в 500 узлов приведены на рис. 4.2. Резуль-

тат аналогичный, но численное решение теперь обозначается 

пунктирной линией. Как видно, графики сближаются. 

 

 

Рис. 4.1. Сравнение точного и численного решений при N = 50 

 

 

Рис. 4.2. Сравнение точного и численного решений при N = 500 

И уже при совсем мелкой сетке в 5000 узлов (рис. 4.3) гра-

фики почти сливаются друг с другом. Здесь уже наглядно видны 
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три перепада для плотности – красная линия. Сначала идёт волна 

разрежения – гладкое понижение, потом скачок – контактный 

разрыв, и в конце ещё один скачок – ударная волна.  

 

 

Рис. 4.3. Сравнение точного и численного решений при N = 5000 

Если рассматривать нормы разностей численного и точного 

решения, то можно увидеть, что точность возрастает. Для этого 

нужно подобрать рабочую норму.  

Нами использовались три нормы: равномерная 

max ,approx exact approx exact

k k
k

u u u u    

евклидова  

 
2

approx exact approx exact

k k

k

u u u u  
 

и среднеквадратичная 

 
21
.approx exact approx exact

k k

k

u u u u
N

    

Для каждой нормы произведены подсчёты на разных сетках. 
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Рис. 5. Сравнение норм для разных параметров и сеток 

Как видно из расчётов (рис. 5), для равномерной нормы зна-

чения меняются незначительно. Это происходит по той причине, 

что эта норма ищет максимальную ошибку – наибольшую по-

грешность вычислений. И, как можно видеть на рисунке, осо-

бенно на контактном разрыве в ней всегда будет погрешность 

в значениях и она не будет зависеть от количества узлов. 

Евклидова норма почти не убывает, а в случае плотности 

происходит ее рост. Это связано с чрезвычайно сильным «размы-

ванием» контактного разрыва по расчетным узлам, характерным 

для всех численных методов первого порядка аппроксимации.  

Среднеквадратичная норма убывает при измельчении сетки, 

однако скорость убывания оказывается ниже, чем ожидается при 

применении метода первого порядка аппроксимации. Вероятно, 

такое поведение связано с разрывностью исследуемого течения. 

7. Заключение 

Разработана программа для численного моделирования од-

номерных нестационарных течений газов на основе уравнений 

Эйлера и конечно-разностного метода Лакса – Фридрихса. На ос-

нове моделирования задачи о распаде газодинамического раз-

рыва показана удовлетворительная сходимость численного реше-

ния к точному по мере измельчения расчетной сетки. 
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Abstract: This article is devoted to the software implementation of the numerical Lax-

Friedrichs method for modeling nonstationary problems of gas dynamics. The Soda 

problem is considered in two dimensions. We postulate it in the following way: there 
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is a closed shock tube with a plate in the middle. The plate separates two gases with 

different thermodynamic characteristics. At the initial moment of time, it is instantly 

deleted: gases mix and produce a shock wave. The purpose of the work is to find the 

thermodynamic characteristics at any time and to program the implementation of cal-

culations using the numerical Lax-Friedrichs method. This task is relevant at the mo-

ment due to the lack of clear computational algorithms in the field of gas dynamics. 

The solution depends on the number of cells in the grid into which the surface is di-

vided. As a result, the calculation and numerical values for different grids are given 

as well as their comparison with the help of various norms is made.  

Keywords: shock wave, Soda problem, Lax-Friedrichs numerical method. 
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РОБАСТНОЕ УПРАВЛЕНИЕ ХОДОВОЙ ТЕЛЕЖКОЙ 

ОДНОБАЛОЧНОГО МОСТОВОГО КРАНА  

ПРИ ДЕЙСТВИИ НЕСОГЛАСОВАННЫХ  

ВОЗМУЩЕНИЙ И ПРИ НЕПОЛНЫХ ИЗМЕРЕНИЯХ 

Антипов А. С.1, Ткачева О. С.2 

(ФГБУН Институт проблем управления  

им. В.А. Трапезникова РАН, Москва) 

Рассматривается проблема управления электромеханической системой – 

ходовой тележкой однобалочного мостового крана (механическая подсисте-

ма) с учетом редуцированной динамики двигателя постоянного тока (элек-

трическая подсистема). Объект функционирует в условиях недостатка 

управлений, действия параметрических и внешних возмущений, неполных из-

мерений. При этом возмущения, действующие на механическую подсистему, 

являются несогласованными. Для безопасного переноса груза в указанных 

условиях предложен ряд решений. Сформирована эталонная траектория 

тележки с интегралом от угловой координаты. Наличие интегральной части 

приводит к демпфированию колебаний груза. Показано, что эта часть так-

же позволяет подавить несогласованные ветровые возмущения. Для отсле-

живания сформированной траектории разработана процедура блочного 

синтеза сигмовидных фиктивных управлений в механической подсистеме 

и истинного разрывного управления в электрической подсистеме. Гладкие 

и ограниченные сигмовидные функции обеспечивают подавление несогласо-

ванных возмущений. Эти функции реализуемы в исполнительном устройстве 

и не приводят к его сильному износу, который происходит при формировании 

разрывных фиктивных управлений. Для информационной поддержки закона 

управления разработан динамический дифференциатор с сигмовидным кор-

ректирующим воздействием, предоставляющим оценку скорости по измере-

нию ошибки слежения с любой заданной точностью. Предложенное решение 

позволит отказаться от датчика скорости тележки и избежать всплесков 

оценочных сигналов. Представлены результаты численного моделирования 

замкнутых систем с разрывными и сигмовидными фиктивными управления-

ми. Они продемонстрировали эффективность разработанного подхода. 

Ключевые слова: ходовая тележка мостового крана, несогласованные 

возмущения, параметрическая неопределенность, робастное управле-

ние, сигмовидная функция, динамический дифференциатор. 
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1. Введение 

Использование однобалочных мостовых кранов существен-

но упрощает работы по погрузке и разгрузке объектов в различ-

ных промышленных областях. Конструкция таких кранов вклю-

чает ходовую тележку, к которой на стержне крепится груз. При 

этом тележка способна перемещаться по рельсам с помощью 

движущей силы, создаваемой исполнительным устройством. 

Для данного объекта основная задача заключается в транспор-

тировке груза в желаемое положение за заданное время. Кроме 

того, важно снизить амплитуду колебаний груза как в ходе его 

переноса, так и по достижении желаемого положения, посколь-

ку сильные колебания могут привести к повреждениям окружа-

ющих конструкций и рабочего персонала, а также к появлению 

значимых ошибок позиционирования.  

Помимо разгона и торможения тележки источниками коле-

баний груза являются параметрические и внешние возмущения, 

в качестве которых, в частности, могут рассматриваться сила 

сухого трения и ветер. При этом математическая модель объек-

та отличается нелинейностью и недостатком управляющих воз-

действий. Кроме того, измеряются, как правило, не все пере-

менные состояния. Таким образом, актуальной проблемой явля-

ется разработка робастных законов управления, учитывающих 

указанные особенности и обеспечивающих снижение амплиту-

ды колебаний груза и их демпфирование. 

Методы управления ходовой тележкой можно разделить на 

методы без обратной связи [6, 14] и с обратной связью 

[2, 5, 9, 12, 13, 15, 19, 21]. Первая группа методов основана на 

модификации входного сигнала. Он преобразуется так, чтобы 

выходная переменная изменялась желаемым образом с подавле-

нием колебаний. Среди методов второй группы выделяют, 

в частности, методы оптимального управления [2, 12, 13], адап-

тивного управления [5, 15, 21], управления на скользящих ре-

жимах [9, 19, 20]. При этом методы, основанные на модифика-

ции входного сигнала, и методы оптимального управления чув-

ствительны к параметрическим и внешним возмущениям. Ме-

тоды адаптивного управления позволяют получать оценки неиз-
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вестных параметров и внешних возмущений в реальном време-

ни с последующей компенсацией неопределенностей. Однако 

это приводит к повышению динамического порядка замкнутой 

системы и к увеличению вычислительных затрат на реализацию 

алгоритмов. Эффективным инструментом для подавления воз-

мущений является организация скользящих режимов. Отметим, 

что в большинстве работ по управлению ходовой тележкой ис-

следователи не учитывают динамику исполнительного устрой-

ства. В качестве управления они рассматривают движущую си-

лу. Однако формирование разрывных сил нежелательно на 

практике, поскольку приводит к более быстрому износу испол-

нительного устройства. Чтобы избежать этой проблемы, 

в [9, 19] в разделах, описывающих результаты натурных экспе-

риментов, функцию знака заменяют ее непрерывными аналога-

ми. Однако не всегда приводятся строгие математические дока-

зательства сходимости замкнутых систем после проведения та-

ких замен [19]. Кроме того, во многих работах предполагается 

гладкость возмущений [20]. На практике это не всегда справед-

ливо, поскольку на систему действуют негладкие силы сухого 

трения. 

В ряде работ рассматривалась тележка мостового крана 

с неполным комплектом датчиков. Для оценивания неизмеряе-

мых переменных состояния применялись наблюдатели состоя-

ния с глубокой линейной обратной связью [18] или наблюдате-

ли на скользящих режимах [11]. Однако в первом случае могут 

возникать всплески оценочных сигналов, а во втором – «чатте-

ринг» (паразитные колебания, которые ухудшают качество оце-

нивания), для уменьшения которого исследователи повышают 

порядок скользящих режимов [17]. 

Научная новизна и основной вклад предлагаемой работы 

состоит в том, чтобы восполнить указанные недостаточно изу-

ченные моменты. Так, в данной работе учитывается редуциро-

ванная динамика исполнительного устройства – двигателя по-

стоянного тока (ДПТ). Математическая модель объекта описы-

вается в разделе 2 и включает механическую и электрическую 

подсистемы. Допустимыми внешними возмущениями, действу-

ющими на механическую подсистему, в общем случае являются 
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негладкие функции. При учете динамики ДПТ они становятся 

несогласованными с управлением, находящимся в электриче-

ской подсистеме, и не могут быть подавлены или скомпенсиро-

ваны непосредственно за счет управления. Для демпфирования 

колебаний груза и подавления ветровых возмущений предлага-

ется ввести в задающее воздействие интеграл от угловой коор-

динаты [21]. Ставятся следующие задачи:  

1) в предположении наличия всех измерений, синтезировать 

базовый закон разрывного управления, реализуемый в электри-

ческой подсистеме и обеспечивающий отслеживание задающего 

воздействия с некоторой точностью; 

2) в предположении наличия измерений только угловой ко-

ординаты, движущей силы и ошибки слежения, разработать ди-

намический дифференциатор для оценивания производной 

ошибки слежения с любой заданной точностью. 

В постановках обеих задачах полагается, что все параметры 

объекта и внешние возмущения неизвестны. Имеются только 

диапазоны их изменения, при этом не ставится задача иденти-

фикации. Кроме того, динамический дифференциатор не дол-

жен приводить к всплескам оценочных сигналов. Построенный 

дифференциатор обеспечит информационную поддержку раз-

рывного закона управления в условиях неполного комплекта 

датчиков. В разделах 3–4 представлено комплексное решение 

указанных задач с использованием в каждой из них гладких 

и ограниченных сигмовидных функций [1, 3]. В разделе 5 при-

ведены результаты численного моделирования. 

В отличие от прошлых работ авторов [1, 7, 8], связанных 

с управлением ходовой тележкой транспортировочного крана, 

в данной работе рассмотрена более адекватная математическая 

модель объекта: учтены динамика ДПТ и действие на систему 

несогласованных ветровых возмущений. С учетом данных осо-

бенностей разработан новый закон управления с формировани-

ем истинного разрывного управления в электрической подси-

стеме и сигмовидных фиктивных управлений в механической. 

Кроме того, по сравнению с [1] в данной работе предложено 

строить наблюдатель-дифференциатор на основе преобразован-
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ной системы в невязках, что снижает вычислительную слож-

ность регулятора. 

2. Описание математической модели объекта 

управления. 

Схема ходовой тележки представлена на рис. 1. 

 

Рис. 1. Схема ходовой тележки  

Математическая модель объекта управления описывается 

системой дифференциальных уравнений пятого порядка [16]: 

(1) )]()(),()[(, 12211
1

221 tqGqqqCυqIqqq   , 

(2) .buxcaFF    

где уравнения (1) соответствуют динамике механической под-

системы. Здесь q1 = (x, ) – вектор положений; x – горизонталь-

ное перемещение тележки;  – угол отклонения стержня с гру-

зом от вертикальной оси, || < /2; ),(2 xq   – вектор скоро-

стей; υ = (F, 0)T – вектор известных сил, F – движущая сила, со-

здаваемая ДПТ;  = (Fr, F)T – вектор неизвестных сил, которые 

будем рассматривать как внешние несогласованные возмуще-

ния, действующие на механическую подсистему. При этом 

Fr(t) – возмущения, которые могут включать неучтенные 
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в модели силы, в частности, силу сухого трения; F(t) – возму-

щения, включающие, в частности, силу ветра.  

Матрицы в механической подсистеме (1) имеют вид: 
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Здесь I(q1) – нелинейная симметричная матрица инерции; 

C(q1,q2) – матрица кориолисовых сил; G(q1) – вектор гравитаци-

онных сил; P – потенциальная энергия; M – масса тележки;  

m – масса груза; l – длина стержня; 81,9g – ускорение свобод-

ного падения.  

Уравнение (2) соответствует редуцированной динамике 

ДПТ с жестким типом сочленений [16], где a = R/L, 

b = rKt/(Lrp), c = KbKtr2/(Lrp
2) – положительные конструктив-

ные коэффициенты; r – передаточное число; rp – радиус шкива; 

R – сопротивление якоря ДПТ; L – индуктивность якоря ДПТ; 

Kb, Kt – коэффициенты пропорциональности. Управлением u 

является напряжение питания якорной цепи ДПТ. 

Для объекта (1)–(2) выдвигаются следующие предположе-

ния: 

1) груз является точечной массой; 

2) масса, жесткость стержня, а также трение, возникающее 

при колебаниях, не учитываются (в силу их малости); 

3) матрица ),()(5,0 211 qqCqI   является кососимметрической, 

т.е. 

(3) ;0)),()(5,0( 211
12   xqqCqIxRx T   

4) параметры m, M, l, a, b, c неизвестны, в процессе функци-

онирования объекта они могут изменяться в известных диапазо-

нах, например: 

(4) ;0,)(0 maxmin  tataa   

5) внешние возмущения Fr(t) и F (t) в общем случае являют-

ся кусочно-гладкими функциями, они неизвестны, но ограниче-

ны известными константами по модулю: 
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6) ветровые возмущения F (t) имеют импульсный характер; 

7) измерениям доступны переменные x, , F, при этом шумы 

измерений отсутствуют. 

Предельная мощность ДПТ определяет конструктивные 

ограничения на максимальное значение управления u и, следо-

вательно, на движущую силу F, ускорение x  и скорость x  те-

лежки: 

(6) 
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Предлагается ввести эталонную траекторию тележки, со-

стоящую из двух слагаемых: 

(7) .0const,)()(
0

   dxtg
t

d   

Первое из них xd ≠ x(0) = const – заданное конечное поло-

жение, в которое требуется переместить груз. Второе слагаемое 

содержит интеграл от угловой координаты и предназначено для 

демпфирования колебаний стержня с грузом [21]. Гипотеза ис-

следования состоит в том, что интегральная часть в (7) позволит 

не только демпфировать колебания [21], но и подавить несогла-

сованные ветровые возмущения F (t). 
Таким образом, требуется синтезировать закон 

управления u в форме динамической обратной связи, обеспечи-

вающий отслеживание положением тележки x(t) заданной тра-

ектории g(t) (7) инвариантно по отношению к допустимым не-

согласованным возмущениям (5) со стабилизацией линейной 

и угловой скоростей: 

(8) ,)(,|)()(|,|)()(| 2111 dxTxtgtxtgtx     

(9) ,|)(| 22t   

где T – время переноса груза, величины 11, 21, 22 определяют 

точность позиционирования. В следующем разделе представле-

но решение этой проблемы. 
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3. Синтез закона управления 

Для отслеживания заданной траектории (7) инвариантно по 

отношению к несогласованным возмущениям воспользуемся 

свойством пассивности системы [15] и блочным подходом [3]. 

Согласно данному подходу часть переменных состояния можно 

трактовать как фиктивные управления. Тогда возмущения, дей-

ствующие по одним каналам с фиктивными управлениями, бу-

дут согласованы с ними. Кроме того, задача синтеза закона 

управления разобьется на несколько более простых – элемен-

тарных подзадач синтеза фиктивных управлений, за счет кото-

рых можно воздействовать на возмущения. В механической 

подсистеме в качестве фиктивных управлений рассмотрим ско-

рость тележки x  и движущую силу F. Требуется выбрать жела-

емые фиктивные управления так, чтобы обеспечить (8). При 

этом они должны быть приняты из класса гладких и ограничен-

ных функций, чтобы, во-первых, фиктивные управления могли 

быть реализованы в исполнительном устройстве. Во-вторых, 

важно не допустить сильного перерегулирования переменных 

состояния, поскольку имеются конструктивные ограничения (6). 

Исходя из этих целей желаемые фиктивные управления предла-

гается выбрать в виде гладких и ограниченных сигма-

функций [1]: 

(10) * *
1 1 11 2 2 21( ) ( ),  ( ),x g m k e F m k e       

(11) 1
1

1

1 exp( )
( ) ,  , const 0,  1,2,

1 exp( )

i i
i i i i i i

i i

k e
m k e m m k i

k e


 
   

 
 

где ошибка слежения e11 и невязки между реальными и желае-

мыми фиктивными управлениями  )(21 xxe  , e31 =F – F* 

имеют вид 

(12) 

T T

1 11 12

T T

2 21 22 1 1 11

31 2 2 21

( , ) ( , ) ,

( , ) ( ( ), ) ,

( ).

e e e x g

e e e x g m k e

e F m k e



 



  

   

 

  

Сигмовидная обратная связь (10)–(11) имеет два настраива-

емых параметра: амплитуду mi, в большей степени влияющую 
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на время сходимости переменных, и большой коэффициент ki, 

в большей степени влияющий на точность стабилизации, i = 1, 2. 

Сформированная сила F* (10) является задающим воздей-

ствием в электрической подсистеме. Его отслеживание и стаби-

лизация соответствующей невязки e31 (12) достигается за счет 

синтеза истинного разрывного управления: 

(13)  
3 31 3

31 2 2 1 1

sign( ), const 0,

( ( ( ( )))).

u m e m

e F m k x g m k x g 

   

    
  

Использование разрывных управлений естественно именно 

в электрических устройствах, функционирующих в ключевом 

режиме. При этом еще раз отметим, что нежелательно приме-

нять разрывные функции в качестве фиктивных управлений 

в механической подсистеме. 

Таким образом, с учетом (12) приходим к следующей за-

мкнутой системе (1)–(2): 

(14) 

T

1 2 11 1 11

1 T T

2 31 2 2 21 2 1 1 11

T T

1

31 2 3 31

( ( ),0) ,

[( ( ),0) ( ( ( ),0) )

( , ) ( ,0) ],

sign( ),

r

e e m k e

e I e m k e C e g m k e

G F F I g

e aF cx bm e





 

 

     

    

     

 

где функции 

(15) 21
1 12

(1 ( )) ,  1,2,i i i i i im k k e e i      

являются полными производными сигма-функций (11).  

Для удобства дальнейшего анализа устойчивости замкну-

той системы (14) примем следующие оценки сигма-функции 

(11) и ее первой производной '(ki ei1)=0,5(1 –  2(ki ei1)) [1]: 

(16) 

1 1 1

1 1 1

1 1

0,8 ( ) 1, 0 ( ) 0,18 ,  2,2 / ;

0,8 / 2,2 0,36 ( ) 0,8,

0,18 ( ) (0) 0,5 ,  2,2 / ,  1,2.

i i i i i i i

i i i i i i

i i i i i i

k e k e k e k

k e k e k e

k k e k e k i

 



 

    

  

     

  

Выражения (16) получены на основе аппроксимации глад-

кой сигма-функции негладкой кусочно-линейной sat-функцией. 

Здесь точки (±2,2)  ±0,8 являются границами разделения 

сигма-функции на условно-постоянную и условно-линейную 

части. Тогда в силу (6), (16) производные (15) ограничены: 
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(17) 1
1 1 1 1 1 2 2 2 2 2 12

,  (2 ).m k X m k X           

Амплитуды m1,2 фиктивных управлений (10) и амплитуда 

m3 разрывного управления (13) выбираются так, чтобы гаранти-

ровать последовательную сходимость невязок. Так, сначала 

требуется организовать скользящий режим на линии переклю-

чения e31 = 0, а потом обеспечить сходимость невязок e21, e11 

в следующие окрестности нуля: 

(18) 31 31 21 2 21 11 1 112,2 / 2,2 / ,e e k e k            

где )( 11112121  km , 31 – ширина пограничного слоя 

в реальном скользящем режиме, который возникает, когда не 

все переменные состояния и параметры объекта известны точно 

и появляются ошибки оценивания. Оценка величины погранич-

ного слоя будет дана в следующем разделе. Выбор больших ко-

эффициентов k1,2 определяет точность стабилизации (12). Как 

следствие, при выполнении (18) будет достигнута цель управле-

ния (8).  

Для формализации указанных условий на выбор ампли-

туд mi, i = 1, …, 3, обеспечивающих (18), воспользуемся вторым 

методом Ляпунова. С учетом свойства пассивности системы, 

введем следующего кандидата на функцию Ляпунова [15], ко-

торый включает полную энергию системы: 

 
1 2 3

2 Т 21 1 1
1 11 2 2 1 2 1 3 312 2 2

0,

,  ( ) ( ),  .

V V V V

V e V е I q e P q V e

   

   
  

Составим оценки 
1,2,3V  при |ei1| > 2,2/ki, i = 1, 2, исходя из 

«наихудшего» изменения возмущений (5) и с учетом (3), (16), 

(17) и T

2P e G  [15]: 

(19) 

1 11 21 1 1 11 11 21 1

2 21 31 2 2 21 1

1 21 31 2

1 1

3 31 2 3 31 31

( ( )) ( 0,8 ),

[ ( ) ( )( )]

+ [ cos( )( )] [ 0,8

( ) ( )] [ ( )],

[ sign( )] [

r

r

V e e m k e e e m

V e e m k e F m M

F ml e e m

F m M F ml

V e aF cx bm e e aF cX







 

  

    

   

       

     

         

        1

2 3 ].bm



 
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Тогда в силу «наихудшего» изменения параметров объекта 

(4) выбор амплитуд из условий 

(20) 

max max 1 2 2 2 1 1 1 min

3 31 31

min min 1 22 22

3 max max 22 2

21 2

2 1 11 1

( ( 0,5 )) /

;

( / ( ) )/ ;

1,25( 2( ) )

2,2 / ;

2,75 / 2,2 / .

r

a F c X m k X m k X b

m U e

F m l

F m M m F

e k

k m e k

  



   

    

      

       

 

  

  

приведет к выполнению неравенств 01,2,3 V , (19) и, следова-

тельно, к выполнению (18) и (8) с учетом ограничений (6) при 

всех вариациях неизвестных параметров объекта и возмущений 

(4), (5). Отметим, что выбор параметра  согласно (20) также 

обеспечивает подавление ветровых возмущений и стабилиза-

цию угловой скорости (9). 

В силу априорных предположений (6) неравенства (20) 

имеют непустое множество решений. Из них итерационно нахо-

дятся допустимые значения параметров обратной связи. Макси-

мально возможные значения k1, k2,  зависят от конструктивных 

ограничений (6) и определяют достижимую точность стабили-

зации |e11| = |x – g| ≤ 11, ,|||| 212121  gxe   (8), ,|| 22  

(9) в установившемся режиме. 

Таким образом, V = V1 + V2 + V3 является функцией Ляпу-

нова для системы (14). Цель управления (8)–(9) достигнута. 

В следующем разделе будет рассмотрена проблема синтеза 

динамического дифференциатора для информационной под-

держки системы управления, когда нет полного комплекта дат-

чиков. 

4. Синтез динамического дифференциатора 

Обратная связь (13) замыкается по невязке 

31 2 2 21( ( , , , ))e F m k e x g x g  . Покажем, что по измерениям x(t), 

θ(t) и вычислениям g(t, θ) (1) имеется возможность восстановить 
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сигнал e21(t) без измерений ( )x t . Отметим, что для получения 

оценки ( )x t  по измерениям x(t) без шума целесообразно ис-

пользовать алгоритмы численного дифференцирования на осно-

ве вычисления конечных разностей. При наличии шума измере-

ний эти алгоритмы дополняются фильтрами нижних частот. 

Однако данное решение приводит к появлению запаздывания 

в системе, возбуждению помех и накоплению ошибок с ростом 

порядка оцениваемой производной. Поэтому для повышения 

пригодности системы управления к практической реализации 

(в условиях, когда будет присутствовать шум измерений) пред-

лагается использовать другой подход к дифференцированию, 

основанный на динамических моделях сигналов. 

Для получения оценки e21(t) построим динамический диф-

ференциатор первого порядка как копию виртуального уравне-

ния 11 21 1 1 11( )e e m k e   в виде 

(21) 1 1 11( ) ,z m k e v    

где z – переменная состояния; ν = m0σ(k0ε) – сигмовидное кор-

ректирующее воздействие вида (11) с параметрами 

m0,k0 = const > 0, ε = e11 – z – невязка. В силу e11(t) = x(t) – g(t) 

сигнал ε(t) известен. 
Для настройки параметров дифференциатора (21) составим 

виртуальную систему 

(22) 2
21 21 0 0 0, 0,5 (1 ( )) ,e v e m k k          

где e21 (12) и 21( )e t  трактуются как внешние ограниченные воз-

мущения: 21 2 1 1 1( ) 2 .e t X m k X   

(23) 21 1 1( ) 2 ,e t X m    

Задача синтеза заключается в том, чтобы обеспечить стаби-

лизацию системы (23):  

(24) 
0 01 21 02

21 0 0 01 02

( ) 2,2 / , ( ) ( ) ( )

( ) ( ), ,0 , .

t k t e t v t

v t e t t t t T

        

       
  

Отметим, что в задаче оценивания (24) можно обеспечить любую 

заданную точность 02 в отличие от задачи слежения (8)–(9). 

Установим z(0) = e11(0), тогда (0) = 0 < 01. Первое нера-

венство (24) будет выполнено при всех t ≥ 0 если амплитуда 
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корректирующего воздействия будет удовлетворять условиям, 

аналогичным (19)–(20), а именно:  

(25) 
0 1 1 0 1 1

21 1 1 0

0,8 (2 ) 1,25(2 )

( ) (2 0,8 ) 0.

m X m m X m

e v X m m  

     

      
 

Неравенство для выбора второго параметра k0, обеспечива-

ющего заданную точность оценивания (24), получим из доста-

точных условий устойчивости системы (22) при |(t)| ≤ 2,2/k0 

с учетом (16), (23): 

21 0 0 1 1 0 0( ( )) (2 0,36 ) 0,e m k X m m k            

2
21 0 0 0

2 1 1 1 0 0

( 0,5 (1 ( )) )

(2 0,18 ) 0.

e m k k

X m k X m k

    

 

   

   
 

Эти неравенства и, следовательно, оба неравенства (24) бу-

дут выполнены, если 

(26) 1 1 2 1 1 1
0

01 0 0 02

2 5,56(2 )2,2
max ; .

0,8

X m X m k X
k

m m

  
  

  

   

Таким образом, корректирующее воздействие дифференци-

атора (21) с параметрами (25), (26) предоставляет искомую 

оценку v(t) = e21 ± 02, t ≥ t0. При этом вместо базового закона 

управления (13) используется закон, формируемый из следую-

щих сигналов: 

(27) 3 31 31 2 2
ˆ ˆsign( ), ( ) ( ) ( ( )).u m e e t F t m k v t      

В замкнутой системе (1)–(2) с динамической обратной свя-

зью (21), (27), ошибки оценивания приводят к появлению 

в скользящем режиме пограничного слоя 313131 |ˆ|  ee .  

Оценим его величину с учетом первого приближения 

(kx) ~ 0,5kx, x  0:  

31 31 2 2 2 21 2 2 02 31
ˆ ( ) ( ) 0,5e e m k v k e m k        . 

Данное выражение нужно принять во внимание при зада-

нии величины ошибки оценивания 02 (24). 

Заметим, что для систем с неопределенным входом для 

оценивания неопределенностей динамический порядок наблю-

дателей состояния (или дифференциаторов) обычно увеличива-

ется за счет уравнения, имитирующего динамику неопределен-
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ного входа [17]. Особенность дифференциатора (21) состоит 

в том, что он имеет первый порядок (дифференциальное урав-

нение для неопределенного входа (22) вводится только для ана-

лиза устойчивости) и его корректирующее воздействие восста-

навливает неизвестную невязку 21( , , , )e x g x g . Это позволяет из-

бежать проведения замен переменных для формирования невяз-

ки 21( , , , )e x g x g , что снижает вычислительную сложность алго-

ритма. Использование для корректирующего воздействия глад-

кой и ограниченной сигма-функции обеспечивает высокое каче-

ство оценивания, не дает всплесков в начале переходного про-

цесса и в отличие от редуцированных наблюдателей Луенберге-

ра [10] не требует знания параметров модели объекта (1). 

5. Результаты численного моделирования 

Для проверки работоспособности и эффективности разра-

ботанных алгоритмов было проведено численное моделирова-

ние в MATLAB-Simulink. Для интегрирования применялся ме-

тод Эйлера с постоянным шагом 5·10-4 [с]. Были известны сле-

дующие диапазоны изменения параметров объекта (1)–(2): 

(28) 

3,3 3,6 [кг]; 2 3 [кг]; 0,7 1,1 [м];

80 180 [Гц], 200,5 365,5 [Н/(В с)],

878,9 1882 [Н/м];

M m l

a b

c

     

    

 

 

Границы в конструктивных ограничениях (6) имели вид: 

 2
2 160 [В],  55 [Н],  15 [м/с ],  0,45 [м/с].U F X X     

Внешним возмущением, действующим на тележку, полага-

лась сила сухого трения [15]: 

 0( ) tanh( / ) | |  [Н],r r rF t f x k x x    

где 0 50 [Н]rf  , 0,1,   0,05 [кг/м]rk   . 

Ветровое возмущение моделировалось в виде импульсного 

воздействия: 

 

0,           15,2,

( ) 1,  15,2 15,3,  [Н]

0,           15,3.

t

F t t

t






   
 
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В описанных условиях требовалось переместить тележку 

с грузом из нулевого начального положения в заданное 

xd = 1,5 [м]. Коэффициенты регулятора (13) были выбраны 

с учетом (20) исходя из «наихудшего» изменения параметров 

объекта и возмущений: 

(29) 1 2 3 1 214 [м/с],  50 [Н],  60 [В],  1,  1.m m m k k        

Проведено несколько серий численных экспериментов 

с одинаковыми коэффициентами регулятора (29), но с разными 

параметрами объекта (28), внешними возмущениями и задаю-

щими воздействиями. 

В первой серии экспериментов 1–3 не учитывалась динами-

ка ДПТ, и в качестве управления рассматривалась движущая 

сила F. Для сравнительного анализа в эксперименте 1 использо-

валось управление на скользящих режимах (СР): 

(30)  

sgn

1 2 2

1 2 sgn

sign( ) [Н],

ξ ( ) ,

1 [Гц], 5 [м],  30 [c Н/м],  28 [Н].

p

p

F k k

x x g

k k

 

     

 

  

     

    

  

В эксперименте 2 использовался разработанный метод 

управления 

 2 2 1 1( ( ( ( )))) [Н]F m k x g m k x g      . 

Для объективности сравнения результатов экспериментов 

1–2 коэффициенты регулятора (29) подбирались так, чтобы 

обеспечить сопоставимое время регулирования. В этих экспе-

риментах задающее воздействие было константой g = 1,5 [м] 

и полагалось, что измеряются все переменные состояния, необ-

ходимые для управления. В эксперименте 3 задающее воздей-

ствие также было константой g = 1,5 [м], но в этом эксперимен-

те использовалась динамическая обратная связь F = – m2σ(k2v), 

формируемая на основе корректирующего воздействия диффе-

ренциатора (21). Оно предоставляло оценку e21 по измерениям x, 

θ и F. На основе заданной точности оценивания Δ02 = 0,02 [м/с] 

и с учетом (25), (26) были приняты следующие коэффициенты 

дифференциатора: 

 0 020 [м/с],  150m k  . 
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В экспериментах 1–3 при моделировании использовались 

следующие значения параметров объекта (1)–(2) из промежу-

точных диапазонов (28): 

(31) 
2,5 [кг], 3,5 [кг], 0,9 [м],

130 [Гц],  262,5 [Н/(В с)], 378,13 [Н/м].

M m l

a b c

  

   
 

На рис. 2 показан график положения тележки x(t) (рис. 2а) 

и график угла отклонения стержня от вертикальной оси θ(t) 

(рис. 2б) для экспериментов 1–2. На рис. 3 представлен график 

скорости тележки ( )x t  (рис. 3a) и график движущей силы F(t) 

(рис. 3б) для экспериментов 1–2. Аналогичные графики для экс-

перимента 3 не показаны, поскольку они идентичны графикам 

для эксперимента 2. На рис. 4 представлен график ошибки оце-

нивания e21(t) – v(t) для эксперимента 3. 

  
    а)          б) 

Рис. 2. Эксперименты 1–2: графики a) x(t) и б) θ(t)  

В таблице 1 для всех экспериментов представлены следу-

ющие значения показателей качества регулирования: время ре-

гулирования t1 [с]: |e11(t)| ≤ 0,04, t ≥ t1; максимальный угол от-

клонения стержня от вертикальной оси θmax [°]: θmax ≥ θ(t)|, t ≥ 0; 

величина ошибки слежения e11 в установившемся режиме 

Δ11 [м]; максимальное значение движущей силы Fmax [Н]: 

Fmax ≥ |F(t)|, t ≥ 0; время затухания колебаний td [с]: |θ(t)| ≤ 0,2°, 

t ≥ td. 
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    а)          б) 

Рис. 3. Эксперименты 1–2: графики a) ( )x t  и б) F(t)  

 

Рис. 4. Эксперимент 3: график e21(t)  ̶  v(t)  

Таблица 1. Значения показателей качества регулирования 

Показатель\Номер эксперимента 1 2 3 

t1, с 11,41 11,31 11,31 

θmax, ° 3,74 4,11 4,11 

Δ11, м 1,15 104 4,12 105 4,11 105 

q21max, м/с 0,57 0,39 0,39 

Fmax, Н 73 49,99 50 

td, с 25,48 82,54 82,54 
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Из рис. 2–3 и таблицы 1 следует, что тележка перемещает 

груз в заданное положение во всех экспериментах.  

В эксперименте 1 с управлением на скользящих режимах 

благодаря вводу угловой координаты и ее производной в закон 

управления удалось обеспечить более быстрое затухание коле-

баний и меньшее значение td (в 3,24 раз) по сравнению с экспе-

риментом 2 [с] сигмовидными функциями, где для управления 

использовались только положение и скорость тележки. Однако 

в результате скорость тележки q21,max и движущая сила F возрос-

ли в 1,46 раз. Ухудшилась точность отслеживания (в 2,79 раз). 

Значения остальных показателей качества в экспериментах 1 и 2 

сопоставимы. Кроме того, отметим наличие «чаттеринга» (пара-

зитных колебаний в установившемся режиме) (см. рис. 3б), ха-

рактерного для систем с разрывными управлениями. 

Из рис. 4 следует, что заданная точность оценивания e21(t) 

с помощью корректирующего воздействия v(t) дифференциато-

ра (21) достигается менее чем за 0,1 [с]. Как следствие, высокое 

качество оценивания привело к тому, что показатели, достигае-

мые для замкнутой системы с динамической обратной связью, 

практически идентичны полученным для замкнутой системы со 

статической обратной связью (таблица 1). 

Во второй серии экспериментов 4–7 при моделировании 

учитывалась динамика ДПТ (2). Была реализована замкнутая 

система с динамической обратной связью (1)–(2), (27). При этом 

положение тележки отслеживало траекторию (7) с интегральной 

составляющей. В эксперименте 4 в эталонной траектории было 

принято γ = 0 (интегральная составляющая отсутствовала, 

как и в экспериментах 1–3), а в экспериментах 5–7 было выбра-

но значение γ = 5. 

В экспериментах 4–5 были использованы значения пара-

метров объекта управления (31), как и в экспериментах 1–3. Для 

проверки робастности разработанного подхода в экспериментах 

6–7 были приняты другие значения параметров. В эксперимен-

те 6 они соответствовали нижним границам (28), и в экспери-

менте 7 – верхним. При этом в экспериментах 6–7 задавались 

другие ветровые возмущения в виде пилообразной периодиче-

ской функции Fθ(t) = 0,02t – 0,01 [Н] с главным периодом 1 [с].  
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Еще раз отметим, что коэффициенты разработанного регу-

лятора оставались одинаковыми (29) во всех экспериментах 2–7. 

На рис. 5 и 6 показаны те же графики, что и на рис. 2 для 

экспериментов 4, 5, и 6, 7 соответственно. 

 
    а)          б) 

Рис. 5. Эксперименты 4–5: графики a) x(t) и б) θ(t) 

 
    а)          б) 

Рис. 6. Эксперименты 6–7: графики графики a) ( )x t  и б) F(t)  

В таблице 2 представлены значения тех же показателей ка-

чества регулирования, что и в таблице 1. 
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Таблица 2. Значения показателей качества регулирования 

Показaтель\Номер эксперимента 4 5 6 7 

t1, с 14,65 18,11 14,10 17,26 

θmax, ° 3,02 3,02 3,61 2,57 

Δ11, м 0,02 0,02 0,02 0,03 

q21max, м/с 0,19 0,19 0,22 0,16 

Fmax, Н 50 50 50 50 

td, с 39,15 21,01 15,04 16,75 

 

Из таблиц 1 и 2 следует, что учет динамики ДПТ в экспе-

рименте 4 привел к ухудшению точности позиционирования 

и увеличению времени регулирования (на 3,34 [c]) по сравне-

нию с экспериментом 3, где она не учитывалась. Наличие инте-

грала от угловой координаты в задающем воздействии обеспе-

чило подавление ветровых возмущений и более быстрое затуха-

ние колебаний в эксперименте 5 по сравнению с эксперимен-

том 4, где не было интегральной составляющей (значение td 

меньше в 1,86 раз). Однако это привело к увеличению времени 

регулирования на 3,46 [с]. На практике при выборе значения γ 

должен быть найден компромисс, удовлетворяющий технологи-

ческим требованиям на допустимое время затухания колебаний 

и время регулирования. Значения остальных показателей каче-

ства в экспериментах 4 и 5 сопоставимы. 

Из рис. 6 следует, что регулятор остается робастным, когда 

значения параметров объекта находятся в допустимых диапазо-

нах (28). Таким образом, результаты экспериментов 5–7 под-

твердили теоретические выкладки и продемонстрировали эф-

фективность разработанного подхода. 

6. Заключение 

Цель работы состояла в создании системы управления хо-

довой тележкой мостового крана, обеспечивающей демпфиро-

вание колебаний груза и учитывающей особенности объекта: 

недостаток управлений, действие несогласованных возмущений 
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на механическую подсистему, неполные измерения. Цель была 

достигнута за счет разработки блочного синтеза сигмовидных 

фиктивных управлений, реализуемых в исполнительном 

устройстве и позволяющих подавить несогласованные возму-

щения. Кроме того, предложены эффективные методы планиро-

вания траектории тележки и методы наблюдения, обеспечива-

ющие информационную поддержку системы управления. Пред-

ложенные методы не требуют идентификации неизвестных па-

раметров и возмущений, что снижает вычислительную слож-

ность алгоритмов. Они применимы к классу систем, где допус-

кается негладкость возмущений. 

Дальнейшим развитием работы может быть учет динамики 

длины стержня, когда происходит не только горизонтальное 

перемещение груза, но и его поднятие или опускание на желае-

мую высоту. Кроме того, целесообразно исследование работо-

способности алгоритмов при наличии шумов в измерениях. 
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Abstract: We considered the problem of controlling an electromechanical system, 

which is a single-girder overhead crane trolley (mechanical subsystem) with the 

reduced dynamics of a DC motor (electrical subsystem). The plant operates under 

conditions of lack of controls, the action of parametric and external perturbations, 

and incomplete measurements. In this case, the perturbations acting on the mechan-

ical subsystem are unmatched. For safe transfer of payload in these conditions, a 

number of solutions have been proposed. A reference trolley trajectory with an inte-

gral of the angular coordinate has been formed. The presence of the integral part 

leads to the damping of payload oscillations. It is shown that this part also makes it 

possible to suppress unmatched wind perturbations. To track the generated trajec-

tory, a procedure for block synthesis of sigmoid fictitious controls in the mechanical 

subsystem and true discontinuous control in the electrical subsystem has been de-

veloped. Smooth and bounded sigmoid functions provide suppression of unmatched 

perturbations. These functions are implemented in the actuator and do not lead to 

its strong wear, which occurs during the formation of discontinuous fictitious con-

trols. For information support of the control law, a dynamic differentiator with a 

sigmoid corrective action has been developed, which provides an estimate of the 

speed by measuring the tracking error with any given accuracy. The proposed solu-

tion will make it possible to abandon the trolley speed sensor and avoid jumps in 

evaluation signals. The results of numerical simulation of closed-loop systems with 

discontinuous and sigmoid fictitious controls are presented. They demonstrated the 

effectiveness of the developed approach. 

Keywords: overhead crane’s trolley, unmatched perturbations, parametric 

uncertainty, robust control, sigmoid function, dynamic differentiator.  
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Работа посвящена разработке алгоритма построения системы дифференци-

альных уравнений Колмогорова для двухфазной системы массового обслужи-

вания с пуассоновским входным потоком, экспоненциальным распределением 

времени обслуживания на каждой фазе и произвольным конечным числом 

заявок в системе. Введены новые функции, существенно упрощающие алго-

ритм построения уравнений Колмогорова, а также инфинитезимальной 

матрицы системы. Проведен сравнительный анализ сложности ранее ис-

пользуемых алгоритмов и алгоритма, представленного авторами. Использо-

вание данного алгоритма позволит в дальнейшем получить аналитические 

и численные решения основных характеристик производительности двухфаз-

ной СМО с большим числом заявок в переходном режиме работы.  

Ключевые слова: двухфазная система массового обслуживания, пере-
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1. Введение 

Многофазные системы массового обслуживания (СМО) 

в последние годы получили довольно широкое развитие 

[3, 6, 11, 13]. Данные модели в отличие от однофазных СМО 

позволяют более точно описать целые классы реальных систем 

                                           
1 Исследование выполнено за счет гранта Российского научного фонда  

№23-29-00795, https://rscf.ru/project/23-29-00795/. 
2 Константин Анатольевич Вытовтов, д.т.н., доцент (vytovtov_konstan@mail.ru). 
3 Елизавета Александровна Барабанова, д.т.н., доцент (elizavetaalexb@yandex.ru). 
4 Владимир Миронович Вишневский, д.т.н., профессор (vishn@inbox.ru). 
5 Светлана Анатольевна Волкова, к.ф.-м.н., доцент (svolkovav2017@gmail.com). 
6 Георгий Константинович Вытовтов, студент (georgii.vytovtov@gmail.com). 

mailto:elizavetaalexb@yandex.ru


 

Управление большими системами. Выпуск 105 

66 

и получить для них основные характеристики производительно-

сти. Так, например, многофазные СМО используются для опи-

сания проводных и беспроводных сетей связи линейной тополо-

гии [13], процессов последовательного обслуживания клиентов 

в различных социальных или коммерческих организациях, цен-

трах информационной и технической поддержки [4]. Кроме это-

го, такое распределение помогает достаточно точно описать 

многокаскадные коммутационные структуры, такие как, напри-

мер, дуальные фотонные коммутаторы [1].  

При исследовании СМО в ряде случаев важно рассматри-

вать не только стационарный [3], но и переходной режим ее 

функционирования [7, 8, 10, 12]. Такая необходимость возника-

ет в случае нестационарного изменения интенсивностей поступ-

ления и обслуживания заявок, что применительно к телекомму-

никационным приложениям отражает ситуации, связанные 

с изменением маршрутов передаваемых сообщений или выхо-

дом из строя обслуживающих устройств. В работах авторов 

[2, 14] рассматривается аналитический подход к описанию ра-

боты СМО с пуассоновским, а также коррелированным вход-

ными потоками и экспоненциальным распределением времени 

обслуживания в переходном режиме. Метод позволяет получить 

решение системы любого конечного числа уравнений Колмого-

рова, используя так называемую матрицу преобразования веро-

ятностей. На первом шаге предлагаемого подхода составляется 

система уравнений Колмогорова, что для экспоненциального 

распределения времени обслуживания не представляет особого 

труда. В случае многофазных систем данная задача значительно 

усложняется, так как реализовать алгоритм составления систе-

мы уравнений Колмогорова для большого числа заявок в каж-

дой фазе даже для двух фаз требует больших вычислительных 

ресурсов.  

Система уравнений Колмогорова для двухфазной СМО 

с пуассоновским входным потоком, экспоненциальным распре-

делением временем обслуживания на каждой фазе и неограни-

ченным буфером впервые представлена в [9]. Однако разрабо-

танные ранее алгоритмы построения уравнений Колмогорова со-

держат большое количество условий, что приводит к их высокой 
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вычислительной сложности и, соответственно, высоким требо-

ваниям к вычислительным ресурсам. 

Поэтому актуальна разработка усовершенствованного алго-

ритма построения системы уравнений Колмогорова для даль-

нейшего исследования двухфазных СМО в переходном режиме, 

позволяющего описывать систему с любым сколь угодно боль-

шим числом заявок и не требующего значительных вычисли-

тельных ресурсов. 

Такой алгоритм представлен авторами в данной статье. 

Статья построена следующим образом. В разделе 3 приведен 

метод построения системы уравнений Колмогорова с примене-

нием новых функций, введенных авторами. Этот метод исклю-

чает использование в алгоритме построения уравнений Колмо-

горова многочисленных условий «если» и позволяет в дальней-

шем проводить аналитическое исследование поведения двух-

фазных СМО с пуассоновским входным потоком и экспоненци-

альным распределением времени обслуживания на каждой фазе, 

в частности, использовать метод матрицы преобразования веро-

ятностей [2, 14] для нахождения вероятностей состояний систе-

мы в переходном режиме. Раздел 4 посвящен разработке алго-

ритма построения матрицы коэффициентов системы уравнений 

Колмогорова. Для этого введена функция, преобразующая чис-

ла, соответствующие количеству заявок в каждой из фаз, в по-

рядковый номер элемента матрицы в столбце или строке. В раз-

деле 5 описаны новые функции, позволяющие упростить алго-

ритм построения матрицы коэффициентов системы уравнений 

Колмогорова. В разделе 6 приведен сравнительный анализ алго-

ритмов построения системы уравнений Колмогорова в соответ-

ствии с хорошо известным методом [9] и с методом, использу-

ющим новые функции. 

2. Постановка задачи 

В данной работе рассматривается двухфазная система мас-

сового обслуживания с пуассоновским входным потоком и экс-

поненциальным распределением времени обслуживания на 

каждой фазе. Система имеет одно обслуживающее устройство, 
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обработка заявок в котором происходит в два этапа с интенсив-

ностями µ1 и µ2 для первого и второго этапов соответственно. 

Входные заявки поступают в систему с интенсивностью λ. Мак-

симальное количество заявок, находящихся в системе, равно N, 

n1 – число заявок, обслуживаемых на первом этапе, n2 – число 

заявок, обслуживаемых на втором этапе, при этом n1 + n2 ≤ N. 

Граф состояний рассматриваемой СМО представлен на рис. 1. 

Состояние S(0, 0) соответствует отсутствию заявок в системе, 

S(n1, n2), n1 = 0, …, N, n2 = 0, …, N, соответствует наличию n1 

заявок в первой фазе обслуживания и n2 заявок на второй фазе 

обслуживания. 
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Рис. 1. Граф состояний двухфазной СМО с пуассоновским  

входным потоком, экспоненциальным распределением времени 

обслуживания на каждой фазе и ограниченным буфером 

Целью данной статьи является модернизация алгоритма по-

строения системы уравнений Колмогорова для случая двухфаз-

ной СМО с ограниченным буфером с целью уменьшения его 

сложности и упрощения ее дальнейшего исследования.  
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3. Система уравнений Колмогорова 

Прежде всего оценим количество возможных состояний си-

стемы в зависимости от максимального количества заявок N. 

Из графа (рис. 1) видно, что любому n2 соответствует 

Sn2 = N + 1 – n2 состояний. Тогда общее число состояний нахо-

дится как 

(1)  
2

2
0

1 .
N

n

S N n


    

Очевидно, что сумма ряда (1) равна 

(2)  21
3 2

2
S N N    

и она соответствует количеству дифференциальных уравнений 

Колмогорова, описывающих данную систему. 

Для этой системы уравнения Колмогорова были записаны 

в развернутом аналитическом виде еще в [9]: 
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Следует отметить, что данный метод, предусматривающий 

использование различных форм записи при различных значени-

ях n1 и n2, является очень неудобным для дальнейшего анализа 

рассматриваемой СМО с большим числом заявок и расчета ее 

характеристик. Он не позволяет получить общий вид рассмат-

риваемой системы, а при составлении программ потребует 

усложнения программного кода, использования дополнитель-

ных условий и ограничений. Однако очень важно отметить, что 

в записи (3) наблюдаются определенные закономерности. Для 

их описания возьмем за основу уравнение для n1, n2 > 0, 

n1 + n2 = N: 

(4) 
 1 2

1 2 1 2 1 1 2

2 1 2 1 2
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содержащее наибольшее количество слагаемых. Допустим, что 

все эти слагаемые содержатся и в остальных уравнениях систе-

мы (3). Однако каждое из слагаемых умножается на некоторую 

функцию fi (n1, n2, N), которая принимает значения 0 или 1 в за-

висимости от значений n1 и n2. Тогда все уравнения в (3) с ис-

пользованием (4) и функции fi (n1, n2, N) можно записать в виде 

(5) 
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Теперь рассмотрим условия, при которых функции 

fi (n1, n2, N) должны принимать значения 0 или 1. В соответствии 

с (3) вероятности в левой части под знаком производной имеют 

вид P(n1, n2, t), n1 = 0, …, N, n2 = 0, …, N. При этом соответству-

ющее уравнение в (3) отсутствует, если n1 + n2 > N, и сохраняет-

ся, если n1 + n2 ≤ N. В сохраненных уравнениях в первой скобке 

правой части (множитель при P(n1, n2, t) интенсивность поступ-

ления λ отсутствует при условии n1 + n2 ≥ N и сохраняется при 

n1 + n2 < N. Интенсивность обслуживания µ1 отсутствует 
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при n1 < 1 и сохраняется при n1 ≥ 1 . Интенсивность обслужива-

ния µ2 отсутствует при n2 < 1 и сохраняется при n2 ≥ 1. Второе 

слагаемое µ2 P(n1, n2 + 1, t) в правой части уравнений (3) отсут-

ствует при n1 + n2 > N и сохраняется при n1 + n2 ≤ N . Третье сла-

гаемое µ1 P(n1 + 1, n2  1, t) в правой части уравнений (1) отсут-

ствует при n2 < 0 и сохраняется при n2 ≥ 0. Четвертое слагаемое 

λP(n1  1, n2, t) отсутствует при n1 < 0 и сохраняется при n1 ≥ 0.  

Исходя из этого анализа для корректной записи системы (3) 

в общем виде (5) необходимо ввести функцию υ1(x, M), ограни-

чивающую возможные состояния системы снизу (минимально 

допустимые значения x = n1, n2, n1 + n2 должны быть большими 

либо равными M), а также функцию υ2(x, K), ограничивающую 

возможные состояния сверху (максимально допустимые значе-

ния n1, n2, n1 + n2 должны быть меньшими либо равными K). То-

гда система (3) с использованием введенных функций υ1(x, M) и 

υ2(x, K) принимает вид 


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Неудобным в записи (6) является то, что вместо отсутству-

ющих уравнений появляется равенство 0 = 0. Это затрудняет 

решение системы (6) матричными методами, поскольку матрица 

коэффициентов (6) оказывается вырожденной. Поэтому вместо 

(6) целесообразно использовать запись уравнений Колмогорова 

в виде 
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где n1 = 0, …, N, n2 = 0, …, N, n1 + n2  N. 

Таким образом, (7) является общей записью системы урав-

нений Колмогорова для двухфазной СМО с пуассоновским 

входным потоком, экспоненциальным распределением време-

нем обслуживания на каждой фазе и ограниченным буфером. 

В Приложении 1 представлен код программы и результаты 

построения системы уравнений Колмогорова для N = 4 в сим-

вольном пакете вычислений MAPLE17 в соответствии с разра-

ботанным методом (6), подтверждающие корректность предла-

гаемого метода. 

В стационарном режиме дифференциальные уравнения (7) 

сводятся к системе алгебраических уравнений 

 2 1 2 1 1 1 2 1 2 1 2( , ) ( ,1) ( ,1) ( , )n n N n n n nl           

1 1 2 2 1 2 1 2( ,1) ( , 1) ( 1, 1)n n n N n n          

(8) 2 2 1 2 1 2( , ) ( , 1)n n N n n       

1 1 2 1 2 1 2( ,1) ( , 1) ( 1, ) 0,n n n N n nl        

где n1 = 0, …, N, n2 = 0, …, N, n1 + n2  N, которая позволяет за-

писать инфинитезимальную матрицу в общем виде для данного 

случая. 

4. Построение матрицы коэффициентов системы 

уравнений Колмогорова. Функция (nk,nl) 

Для нахождения вероятностей состояний системы авторы 

считают целесообразным применение метода матрицы преобра-

зования вероятностей [2, 14]. Для этого прямое уравнение Кол-

могорова должно быть записано в матричной форме 

(9) 
( )

( ),
d P t

P t
dt

 A  

где A – матрица коэффициентов системы дифференциальных 

уравнений (7), ( )P t  – вектор-столбец вероятностей состояний 

системы. Отметим, что A является также инфинитезимальной 

матрицей рассматриваемой системы. Для построения матрицы 

A авторами введена функция 
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(10)    
( 1)

, 1 1,
2

k k
k l k l

n n
n n N n n


      

преобразующая число заявок nk, nl в номер столбца (строки) 

этой матрицы. Проиллюстрируем ее для случая N = 4. Подстав-

ляя все необходимые комбинации nk и nl в (10) для N = 4, полу-

чим порядковые номера столбцов (строк), представленные 

в таблице 1. 

Таблица 1. 

nk 0 0 0 0 0 1 1 1 1 

nl 0 1 2 3 4 0 1 2 3 

 (nk, nl) 1 2 3 4 5 6 7 8 9 

 

nk 2 2 2 3 3 4 

nl 0 1 2 0 1 0 

 (nk, nl) 10 11 12 13 14 15 

Таким образом, элементу A11 матрицы A соответствует ко-

эффициент при P(0, 0) в первом уравнении системы Колмогоро-

ва (7), элементу A21 соответствует коэффициент при P(0, 0) 

во втором уравнении системы (7), элементу A15,15 соответствует 

коэффициент при P(4, 0) в последнем уравнении системы (7) 

и т.д. В соответствии с вышесказанным, а также видом уравне-

ний Колмогорова для данной системы, элементы матрицы, рас-

положенные на главной диагонали, записываются как 

(11) 



1 2 1 2( , ), ( , ) 2 1 2

1 1 1 2 1 2

A ( , )

( ,1) ( ,1) .

n n n n n n N

n n

  l

   

   

 
 

Остальные ненулевые элементы определяются соотношениями 

1 2 1 2( , ), ( , ) 1 1 2 2 1 2A ( ,1) ( , 1),n n n n n n n N       

(12) 
1 2 1 5( , ), ( , ) 2 2 1 2A ( , ),n n n n n n N      

1 2 6 2( , ), ( , ) 1 1 2 1 2A ( ,1) ( , 1).n n n n n n n N  l     

Оставшиеся элементы Ai,j матрицы A равны нулю. В (11) и (12) 

имеем n1 = 0, …, N, n2 = 0, …, N, n3 = n1 + 1, n4 = n2 – 1, 

n5 = n2 + 1, n6 = n1 + n2. 
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Таким образом, метод, основанный на использовании 

функции (10), позволяет построить матрицу коэффициентов (9) 

(инфинитезимальную матрицу) без использования дополни-

тельных условий «если» при переборе состояний nk и nl и суще-

ственно упрощает алгоритм. 

5. Функции υ1(x, M) и υ2(x, K) 

Условия, при которых в уравнении (7) отсутствуют опреде-

ленные слагаемые, были описаны в предыдущем разделе. Те-

перь необходимо определить вид функций υ1(x, M) и υ2(x, K). 

Формально исключение определенных слагаемых в (7) и сохра-

нение оставшихся можно осуществить с помощью функции 

Хевисайда 

(13) 
0

0

0

0, ,
( , )

1, .

x x
x x

x x



 


 

Однако эта функция, по сути, является логической, а не анали-

тической и, следовательно, не очень удобна при разработке про-

граммы. В частности, при ее использовании в программном ко-

де необходимо использовать дополнительные условия «если». 

Аналитически зависимость (13) может быть записана, напри-

мер, как 

(14)    0 0

1
( , ) 1 lim tanh .

2
x x x x


 


      

Но вычисление данного предела также затруднительно. Кроме 

того, гиперболический тангенс равен единице только при x→∞, 

а при остальных x он близок к единице, но не равен ей. Поэтому 

для возможности компактного аналитического представления 

системы уравнений Колмогорова была введена функция 

(15) 
0 0

1 0

0

( , ) ,
2

x x x x
x x

x x


  



 

которая является аналитической и принимает те же значения, 

что и (13). Таким образом, функция, ограничивающая снизу до-

пустимые состояния системы, системы имеет вид 
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(16) 1

0.5 0,5
( , ) ,

2 0,5

x M x M
x M

x M


    


 
 

где M – нижнее допустимое состояние системы. Смещение 

на 0,5 по оси x выбрано в связи с тем, что в противном случае 

при x = M эта функция была бы неопределенна, а ее производ-

ная стремилась бы к бесконечности в этой точке. 

Аналогично с (15) введем функцию 

(17) 
0 0

2 0

0

( , ) ,
2

x x x x
x x

x x


  



 

которая позволяет записать окончательное выражение функции, 

ограничивающей сверху допустимые состояния системы  

(18) 1

0.5 0,5
( , ) ,

2 0,5

K x K x
x K

K x


    


 
 

где K – верхнее допустимое состояние системы. Применительно 

к решаемой задаче x может принимать значения n1, n2, n1+n2 

и т.д. 

Преимуществом функций (16) и (18) в сравнении с (13) яв-

ляется отсутствие дополнительных условий «если», что суще-

ственно сокращает сложность программного кода и позволяет 

упростить аналитическое исследование соответствующей си-

стемы. 

6. Сравнение алгоритмов 

Алгоритм составления уравнений Колмогорова для двух-

фазной СМО с пуассоновским входным потоком и экспоненци-

альным распределением времени обслуживания на каждой фазе 

в соответствии с [9] представляет собой последовательную про-

верку условий в (3), т.е.: 

если n1, n2 = 0, то  

(19) 2

(0,0, )
(0,0, ) (0,1, );

dP t
P t P t

dt
l     

если n1 = 0, n2 = 1, …, N – 1, то  
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(20) 
2

2 2 1 2

2 2

(0, , )
( ) (0, , ) (0, 1, )

(0, 1, );

dP n t
P n t P n t

dt

P n t

l  



     

 

 

если n1 = 0, n2 = N, то 

(21) 2 1

(0, , )
(0, , ) (1, 1, );

dP N t
P N t P N t

dt
      

если n1 = 1, …, N – 1, n2 = 0, то 

(22) 1
2 1 2 1

( ,0, )
( ) ( ,0, ) ( ,1, );

dP n t
P n t P n t

dt
l       

если n1 = N, n2 = 0, то 

(23) 1

( ,0, )
( ,0, ) ( 1,0, );

dP N t
P N t P N t

dt
 l     

если 1 2 1 2, 0,n n n n N   , то 

(24) 
1 2

1 2 1 2

1 1 2 2 1 2 1 2

( , , )
( ) ( , , )

( 1, 1, ) ( , 1, ) ( 1, , );

dP n n t
P n n t

dt

P n n t P n n t P n n t

l  

  l

    

      

 

если 1 2 1 2, 0,n n n n N   , то 

(25) 
1 2

1 2 1 2 1 1 2

1 2

( , , )
( ) ( , , ) ( 1, 1, )

( 1, , );

dP n n t
P n n t P n n t

dt

P n n t

  

l

      

 

 

Блок-схема алгоритма (19)–(25) представлена на рис. 2.  

Алгоритм составления уравнений Колмогорова в соответ-

ствии с методом, представленным в данной статье, сводится 

к вычислению (7) при различных значениях n1, n2. Блок-схема 

этого алгоритма представлена на рис. 3. 

Для оценки временной асимптотической сложности алго-

ритмов введем следующие обозначения: A – число проходов 

первого цикла, B – число проходов второго цикла. Поскольку 

n1max= n2max= N, то число проходов в каждом цикле равно 

A = B = N. Общее число проходов равно числу уравнений в (3) 

(N2+3N+2)/2. Тогда временная сложность обоих алгоритмов 

одинакова и равна O(AB) = O(N2) [5].  
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Начало

 

N, µ  , µ  , l  

n  = 01

2n  = 0

n  = 0
1

n  = 02

n  = 01

21   n  < N
n  = 0
 n  = N

2

1

n  > 01

 n  > 0 
2

n  = 0
n  = N

1

2
1  n  < N1

n  = 02

n  + n <N
1 2

n  > 0

 n  > 0 

1

2

n + n
1 2 =N

Да

Нет Нет Нет Нет Нет Нет

Да Да Да Да Да Да

Выражение (1) Выражение (2) Выражение (3) Выражение (4) Выражение (5) Выражение (6) Выражение (7)

1
2

Нет

Вывод (1) Вывод (2) Вывод (3) Вывод (4) Вывод (5) Вывод (6) Вывод (7)

Конец

2n  = n + 1

2n  = n +1

Да
 n    N

2

2

2

 n    N1

Да

Нет

Нет

Ввод
2

 

Рис. 2. Блок-схема алгоритма (19)–(25) 

С точки зрения емкостной сложности (сложности по памя-

ти), то она одинакова для обоих алгоритмов и равна 

O(AB) = O(N2), поскольку при каждом проходе записывается 

всего одно дифференциальное уравнение Колмогорова.  

При этом в первом алгоритме для записи требуемого выра-

жения имеется семь условных операторов «если». Проверка 

каждого условия в «лучшем варианте» занимает от 1 до 2 тактов 

условного процессора, в «худшем варианте» – от 10 до 20 так-

тов процессора. Во втором алгоритме присутствует только один 

условный оператор. Таким образом, выполнение первого алго-

ритма в «худшем варианте» предполагает использование на 
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7·20 – 20 = 120 тактов условного процессора больше, в «лучшем 

варианте» количество тактов в обоих случаях равно. Таким об-

разом, введение новых функций существенно уменьшает требу-

емый вычислительный ресурс, необходимый для выполнения 

поставленной задачи. 

Начало

Ввод 

N, µ  , µ  , l  

n  = 01

2
n  = 0

n + n1

Да

Нет

Выражение (8)

1 2

Вывод (8)

Конец

2n  = n + 1

n  = n +1

2

1

Да

 2

1

n  
1    N

2
    n    N

Нет

Нет

Да

 

Рис. 3. Блок-схема нового алгоритма, использующего  

функции υ1(x, M) и υ2(x, K) 

Для определения эффективного по времени алгоритма 

также был проведен натурный эксперимент. Реализация обоих 

алгоритмов проведена на языке Python. Определение времени 

выполнения произведено с помощью литерала %time it. Для пер-

вого алгоритма получим время 9 К, а во втором — 3 К. Таким об-

разом, за счет уменьшения общего числа итераций во втором 
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алгоритме значительно снизились вычислительные издержки, 

что говорит о временной эффективности предлагаемого алго-

ритма (таблица 2). 

Таблица 2. Результаты определения времени выполнения  

алгоритма 
N 10 20 30 

Время выполнения алгоритма 1, с 0,001 1,05 2,9 

Время выполнения алгоритма 2, с 0,001 0,35 0,97 

 

7. Заключение 

В данной работе предложен новый алгоритм построения 

прямой системы уравнений Колмогорова, существенно упро-

щающий анализ и расчет вероятностей состояний двухфазной 

СМО с пуассоновским входным потоком и экспоненциальным 

распределением времени обслуживания на каждой фазе в пере-

ходном режиме. Разработанный алгоритм основывается на ис-

пользовании новых функций, введенных авторами. В работе 

также проведен сравнительный анализ сложности ранее исполь-

зуемых алгоритмов и алгоритма, представленного авторами. 

Показано, что предлагаемый алгоритм требует меньших объе-

мов вычислительных ресурсов и особенно эффективен при ис-

следовании переходного режима СМО с большим числом за-

явок в системе. 

Приложение 1 

Код программы построения системы уравнений Колмого-

рова для двухфазной СМО с пуассоновским входным потоком, 

экспоненциальным временем обслуживания на каждой фазе и 

ограниченным буфером в символьном пакете вычислений MA-

PLE17 в соответствии с разработанным методом: 

restart:  
with(linalg):  
N := 4:  
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v1:=(x,m) -> evalf((1/2)*(abs(x-m+.5)+x-m+.5)/abs(x-m+.5), 2)  
v2 := (x, k) -> evalf((1/2)*(abs(k-x-.5)+k-x-.5)/abs(k-x-.5), 2)  
for n1 from 0 to N do for n2  

from 0 to N do  
if n1+n2 <= N then  

print("n1=", n1, "n2=", n2);  
print((Diff(P(n1,n2), 
t))*v2(n1+n2,N+1)+(lambda*v2(n1+n2, 
N)+mu[1]*v1(n1,1)+mu[2]*v1(n2, 
1))*P(n1,n2,t)*v2(n1+n2,N+1)-
mu[1]*v1(n2,1)*v2(n1+n2,N+1)*P(n1+1,n2-1,t)-
mu[2]*v2(n1+n2,N)*P(n1,n2+1,t)-
lambda*v1(n1,1)*v2(n1+n2,N+1)*P(n1-1, 
n2,t)=0)  

end if;  
end do;  

end do; 
 

Результаты построения системы дифференциальных урав-

нений Колмогорова для N = 4 в пакете символьных вычислений 

MAPLE17 в соответствии с разработанным методом: 
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УПРАВЛЕНИЕ ВНЕДРЕНИЕМ ИННОВАЦИЙ 
ПРИ РАЗЛИЧНЫХ ИНФОРМАЦИОННЫХ  

РЕГЛАМЕНТАХ 

Нинидзе Д. Л.1, Угольницкий Г. А.2, Усов А. Б.3 

(Южный федеральный университет, г. Ростов-на-Дону) 

Исследуется двухуровневая система управления внедрением инноваций в орга-

низациях с учётом условия их «жизнеспособности». Основная задача матема-

тического моделирования согласования частных и общественных интересов 

в моделях продвижения инноваций заключается в том, чтобы определить под-

ходящую стратегию продвижения инноваций при условии получения макси-

мального дохода лицами, продвигающими инновации. Задача рассматривается 

в иерархической постановке. Имеется один субъект управления верхнего 

уровня (центр) и несколько субъектов нижнего уровня (агентов). За результат 

внедрения инноваций отвечает центр, а непосредственно их внедрением зани-

маются агенты. Центр управляет внедрением инноваций, используя различные 

информационные регламенты. Агенты продвигают инновации, на что полу-

чают средства от центра. При этом агенты несут личные расходы. Агенты 

имеют свой частный интерес, а именно, занимаются сторонней деятельно-

стью, не связанной с продвижением инноваций, которая также приносит им 

доход. Указаны алгоритмы построения решений игр Гермейера при побужде-

нии и принуждении. Численно решения строятся методом качественно репре-

зентативных сценариев имитационного моделирования. Проведены имитаци-

онные эксперименты, дан анализ полученных результатов. 

 

Ключевые слова: игры Гермейера, побуждение, принуждение, имитаци-

онное моделирование, метод качественно репрезентативных сценариев, 

внедрение инноваций. 

1. Введение 

Под инновациями понимается использование новых техно-

логий, видов продукции и услуг, приносящее в будущем допол-

нительный доход. Внедрение инноваций требует перестройки 

сложившегося производства, переподготовки работников, допол-

нительных затрат и одновременно связано с риском потерпеть 
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сиюминутные убытки. Единой эффективной стратегии по успеш-

ному внедрению инноваций до сих пор нет. 

Среди имеющихся работ, посвящённых внедрению иннова-

ций, выделим [4–7, 13, 19]. В [5] рассмотрены вопросы определе-

ния состава источников финансирования (государственные, соб-

ственные средства организаций, коммерческие) процесса внедре-

ния инноваций, выбора модели финансирования (рыночная, кор-

поративно-государственная, кластерная, мезо-корпоративная). 

Также исследованы условия поддержки инновационной деятель-

ности организации, сделан вывод о перспективах внедрения ин-

новаций в современных условиях, когда финансовые рынки пе-

реживают глубокий кризис. В [4] исследуется несколько основ-

ных типов моделей финансирования (рыночная, корпоративно-

государственная, кластерная, мезо-корпоративная), используе-

мых при внедрении инновационных технологий, анализируются 

достоинства и недостатки каждой из них. В [13] предложена ком-

плексная системно-динамическая модель рыночной диффузии 

инновационного продукта, состоящая из подмоделей: ядра, пред-

ставляющего собой эпидемическую модель распространения ин-

новаций, и вспомогательных системно-динамических моделей – 

модели временных параметров жизненного цикла инновации, мо-

дель ценообразования, модель управления рыночным продвиже-

нием продукта (рекламой), модель управления качеством про-

дукта, модель конкурентного рынка. Предлагаются области ис-

пользования данной комплексной модели. В [6] рассматривается 

задача моделирования сбалансированной системы показателей 

(ССП) предприятия, которая идентифицирует стратегию деятель-

ности IT-компании, в том числе и по внедрению инноваций. Мо-

делирование проводится на основе раскрашенных сетей Петри, 

что позволяет проводить «горизонтальный» и «вертикальный» 

анализ ССП по показателям, целям и перспективам как незави-

симо друг от друга, так и во взаимосвязи. В [19] изучаются фак-

торы, влияющие на процесс внедрения инноваций, и его резуль-

таты для всех типов инноваций (технологические и процессные, 

сервисные и производственные, административные), проводится 

систематический обзор существующих исследований по внедре-

нию инноваций. Предлагаются три возможные программы иссле-

дований: а) рассмотрение индивидуальных факторов в качестве 
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основных показателей поведения человека при внедрении инно-

ваций;  б) исследование возможности того, что инновации изме-

няются в ходе их внедрения и что это может привести к различ-

ным формам результатов внедрения; в) раскрытие механизма 

внедрения организаций, которые постоянно принимают и внед-

ряют инновации в течение длительного периода. В [7] рассматри-

ваются общие проблемы управления инновациями, а также клас-

сифицируются задачи организационного управления инноваци-

онным развитием фирмы, приводится комплекс моделей и мето-

дов, позволяющих решать эти задачи. К их числу относятся: за-

дача финансирования инновационного развития фирмы, задача 

управления организационными проектами, задача институцио-

нального управления, задача мотивации персонала, задача управ-

ления развитием персонала.  

В настоящей работе задача моделирования процесса внедре-

ния инноваций ставится и исследуется на основе цикла статей  

[8–11]. В этих работах с использованием [3, 14–16] предложен 

подход к исследованию сложных организационных систем, осно-

ванный на сведении задачи исследования системы управления 

к рассмотрению иерархической игры нескольких лиц.  

Основная идея настоящей статьи состоит в использовании 

иерархического теоретико-игрового подхода при моделировании 

процесса внедрения инноваций. Имеется несколько иерархиче-

ски упорядоченных агентов управления, причем во внедрении 

инноваций заинтересован только стратегически ориентирован-

ный агент управления верхнего уровня. Агенты нижних уровней 

руководствуются своими сиюминутными целями и обычно не за-

интересованы в изменении текущего положения дел и, как след-

ствие, во внедрении инноваций. В развитие ранее опубликован-

ных работ проводится сравнительный анализ эффективности ис-

пользования в процессе внедрения инноваций различных мето-

дов иерархического управления (принуждение, побуждение) 

в случае информационных регламентов игр Гермейера Г1 

и Г2 [3]. Сравнительная оценка эффективности разных подходов 

к управлению проводится на основе анализа выигрыша агента 

управления верхнего уровня [3] и коэффициента системной со-

гласованности [14]. 
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Оставшаяся часть статьи организована следующим образом. 

В разделе 2 приводятся постановка стационарной задачи иерар-

хического управления процессом внедрения инноваций и методы 

исследования предложенной модели при использовании разных 

информационных регламентов – разных механизмов управления 

субъектами нижнего уровня [11, 12]. Алгоритмы нахождения ре-

шений для разных информационных регламентов приведены 

в [8, 10]. В разделе 3 проводится аналитическое исследование мо-

дели в случае информационного регламента игры Гермейера Г1. 

В разделе 4 описаны алгоритмы построения решения с помощью 

метода качественно репрезентативных сценариев имитационного 

моделирования для игр Гермейера Г1 и Г2. Суть данного метода 

[21] состоит в том, что из всего множества допустимых управле-

ний, мощность которого велика, можно выбрать небольшое 

число сценариев. Результаты реализации таких сценариев каче-

ственно различны, а последствия реализации других сценариев 

не дают ничего существенно нового. Раздел 5 посвящён числен-

ному моделированию задачи. В разделе 6 проводится сравни-

тельный анализ полученных результатов имитационных экспери-

ментов. 

2. Математическая модель 

Для моделирования процесса внедрения инноваций предла-

гается двухуровневая модель, включающая агента управления 

верхнего уровня (центр), отвечающего за внедрение инноваций, 

и нескольких «близоруких» агентов управления нижнего уровня 

(агентов), которые стремятся к максимизации только своего те-

кущего выигрыша и не заинтересованы во внедрении инноваций, 

если центр их не стимулирует. 

Первым своё управление выбирает центр, агенты выбирают 

свои стратегии поведения, когда выбор центра уже известен. 

Центру необходимо определить подходящую стратегию продви-

жения инноваций при условии получения им максимального до-

хода и выбрать метод иерархического воздействия на агентов. 

В качестве методов иерархического управления в модели исполь-
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зуются принуждение и побуждение. При побуждении центр воз-

действует на целевую функцию агента, а при принуждении – на 

область допустимых управлений агента.  

Предлагаемая в настоящей работе модель развивает резуль-

таты работы [11], в которой предложена модель устойчивого раз-

вития организационных систем при внедрении инноваций. В от-

личие от [11], для решения задачи продвижения инноваций ис-

пользуются разные информационные регламенты, а именно ин-

формационные регламенты игр Гермейера Г1 и Г2 при побужде-

нии и принуждении. Проводится сравнительный анализ резуль-

татов с точки зрения достижения необходимого уровня иннова-

ционного развития предприятия. При численном исследовании 

применяется метод качественно репрезентативных сценариев 

имитационного моделирования. 

При побуждении центр создает агентам условия, при кото-

рых им выгодно способствовать достижению цели центра. При 

принуждении центр, сужая область допустимых управлений 

агентов, заставляет их способствовать достижению своей цели, 

не оставляя им других возможностей [12]. В игре Гермейера Г1 

центр определяет оптимальные ответы агентов на каждое свое 

управление, а затем объявляет им о своем решении и стратегии 

поведения. Только после этого агенты выбирают стратегию сво-

его поведения одновременно, что приводит к равновесию Нэша 

в игре агентов. В игре Гермейера Г2 центр устанавливает для 

агентов стратегии наказания, если те откажутся с ним сотрудни-

чать, и поощрения, если будут сотрудничать. Результатом нака-

зания являются гарантированные выигрыши для агентов. Страте-

гия поощрения определяется при оптимизации целевой функции 

центра одновременно и по его управлениям, и по управлениям 

агентов, но с дополнительными условиями: выигрыши агентов 

должны быть больше их гарантированных выигрышей. Затем 

центр объявляет агентам свои стратегии поведения с обратной 

связью по управлению – наказание, поощрение. Агентам эконо-

мически выгоднее сотрудничать с центром, поэтому они выби-

рают стратегию поощрения [12]. 

Приведём вначале математическую постановку задачи в слу-

чае побуждения. Агенты непосредственно занимаются продви-
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жением инноваций, за что при побуждении получают вознаграж-

дение от центра. При этом каждый агент несёт некоторые рас-

ходы. Кроме того, агенты имеют частный интерес, не связанный 

с внедрением инноваций, который также приносит им доход.  

Целевые функции центра и n агентов отражают их доходы 

и имеют следующий вид: 

–  при побуждении для центра (ведущего) 

(1) 𝐽0(𝑣, 𝑢) = 𝑥(𝑘(𝑆𝑣, 𝑆𝑢)) − 𝑆𝑢 → max
𝑢

; 

–  для i-го агента (ведомого), i=1,2,…,n; 

(2) 𝐽𝑖(𝑣, 𝑢) = 𝑔𝑖(𝑇𝑚𝑎𝑥 − 𝑣𝑖) + 𝑦(𝑘(𝑆𝑣 , 𝑆𝑢)) − ℎ(𝑣𝑖) → max
𝑣𝑖

. 

Здесь ui – количество ресурсов центра, которые он тратит на 

стимулирование внедрения инноваций i-м агентом (управление 

центра при побуждении); vi – время, которое затрачивает i-й агент 

на внедрение инноваций (управление i-го агента); n – количество 

агентов; 𝑣 = (𝑣1, … , 𝑣𝑛); 𝑢 = (𝑢1, … , 𝑢𝑛), 𝑆𝑣 = ∑ 𝑣𝑖
𝑛
𝑖=1 , 𝑆𝑢 = ∑ 𝑢𝑖

𝑛
𝑖=1 ; 

𝑘(𝑆𝑣 , 𝑆𝑢)  – качество использования программно-аппаратного 

обеспечения (ПАО) комплекса планирования производственных 

ресурсов (КППР) [20], которое зависит от управлений агентов и 

центра. Под внедрением инноваций в модели понимается внедре-

ние и использование ПАО КППР; 𝑥(𝑘(𝑆𝑣 , 𝑆𝑢)) – выгода центра 

от ПАО КППР; 𝑔𝑖(𝑇𝑚𝑎𝑥 − 𝑣𝑖) – доход агента от частной деятель-

ности; 𝑦(𝑘(𝑆𝑣 , 𝑆𝑢)) – выгода агентов от использования ПАО 

КППР; ℎ(𝑣𝑖) – личные расходы агента во время внедрения инно-

ваций. 

Планирование производственных ресурсов (ППР) [20] – это 

система программного обеспечения, предназначенная для повы-

шения эффективности, результативности и координации произ-

водства, закупок, отгрузки, контроля запасов и учёта затрат на 

производственном предприятии. Ожидается, что использование 

ППР улучшит производительность предприятия, оборот запасов, 

отслеживание партий и обслуживание клиентов. Однако внедре-

ние ППР затруднено, поскольку оно требует, чтобы сотрудники 

в различных областях предприятия выполняли новые, взаимоза-

висимые задачи.  

Ограничения на управления агентов и центра при побужде-

нии соответственно имеют следующий вид (i = 1, 2, …, n): 
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(3) 𝑣𝑚𝑖𝑛 ≤ 𝑣𝑖 ≤ 𝑣𝑚𝑎𝑥, 

(4) 𝑢𝑚𝑖𝑛 ≤ 𝑢𝑖 ≤ 𝑢𝑚𝑎𝑥. 

Здесь 𝑣𝑚𝑖𝑛, 𝑣𝑚𝑎𝑥,  𝑢𝑚𝑖𝑛, 𝑢𝑚𝑎𝑥 – известные постоянные величины. 

Для обеспечения успешного развития системы требуется 

обеспечение её «жизнеспособности», под которой подразумева-

ется сохранение некоего целостного или интегративного свой-

ства, отражающего сущность системы. В данном случае условие 

«жизнеспособности» системы состоит в достижении определён-

ного уровня внедрения инноваций и имеет вид 

(5) 𝑘𝑚𝑖𝑛 ≤ 𝑘(𝑆𝑣 , 𝑆𝑢) ≤ 𝑘𝑚𝑎𝑥;  𝑘𝑚𝑖𝑛, 𝑘𝑚𝑎𝑥 = 𝑐𝑜𝑛𝑠𝑡. 
В отличие от побуждения, где центр управляет своими ре-

сурсами u, при принуждении он воздействует на области допу-

стимых управлений агентов, устанавливая нижний предел вре-

мени q для времени vi агентов. При доверительных отношениях 

центра с агентами он не тратит ресурсы на контроль агентов, 

и его целевая функция имеет вид 

(6) 𝐽0(𝑣, 𝑞) = 𝑥(𝑘(𝑆𝑣 , 𝑆𝑢)) − 𝑆𝑢 → max
𝑞

 .    

В общем случае центр тратит ресурсы на контроль агентов, 

и его целевая функция имеет вид: 

(7) 𝐽0(𝑣, 𝑞) = 𝑥(𝑘(𝑆𝑣 , 𝑆𝑢)) − 𝑆𝑢 − 𝑤(𝑆𝑞) → max
𝑞

.  

Целевые функции агентов в обоих случаях имеют вид (2). 

Ограничения на управления при принуждении имеют вид 

(8) 𝑞𝑖 ≤ 𝑣𝑖 ≤ 𝑣𝑚𝑎𝑥, 

(9) 0 ≤ 𝑞𝑖 ≤ 𝑣𝑚𝑎𝑥. 

Здесь величины 𝑢𝑖 = 𝑐𝑜𝑛𝑠𝑡 заданы, i = 1, 2, …, n, так как при 

принуждении центр управляет областью допустимых управле-

ний агентов, а не своими ресурсами; 𝑞 = (𝑞1, . . . , 𝑞𝑛), qi – нижний 

предел времени, который устанавливает центр для времени vi 

агента. Время vi агент тратит на процесс внедрения инноваций, 

поэтому 𝑞𝑖 ≤  𝑣𝑖, 𝑆𝑞 = ∑ 𝑞𝑖
𝑛
𝑖=1 , 𝑤(𝑆𝑞) – выпуклая возрастающая 

функция затрат на административный контроль агентов. При 

принуждении решается задача (2), (5)–(9), а при побуждении – за-

дача (1)–(5). 

Проведём идентификацию функций, входящих в (1)–(9), 

на основе [9, 11, 20]. Агенты управляют временем, которое они 

тратят на внедрение инноваций. При небольших усилиях агентов 
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(малом времени, затрачиваемом на внедрение инноваций), со-

гласно [20], происходит резкий рост производства – фаза подъёма 

качества использования ПАО КППР в производстве. Дальнейшие 

усилия агентов лишь незначительно повышают качество использо-

вания ПАО КППР. Поэтому в качестве функции 𝑘(𝑆𝑣 , 𝑆𝑢) выбрана 

возрастающая выпуклая функция вида  𝑘(𝑆𝑣, 𝑆𝑢) = 𝐶1𝑆𝑣
𝛼 ⋅ 𝑆𝑢

𝛽; 

0 < 𝛼, 𝛽 < 1. 

Пусть 𝑧 = 𝑘(𝑆𝑣, 𝑆𝑢), тогда 𝑥(𝑘(𝑆𝑣, 𝑆𝑢)) = 𝑥(𝑧), 

𝑦(𝑘(𝑆𝑣 , 𝑆𝑢)) = 𝑦(𝑧). Функции 𝑥(𝑧) и 𝑦(𝑧) отражают дополни-

тельный доход центра и агентов от использования ПАО КППР. 

Они рассматриваются как производственные функции. Отметим, 

что в исследованиях отдельных отраслей и регионов наиболее из-

вестна производственная функция Кобба – Дугласа [2]: 

𝑌 = 𝐴 ⋅ 𝐾𝛼 ⋅ 𝐿𝛽, где 𝑌 – объем производства; 𝐾 – затраты капи-

тала; 𝐿 – затраты труда; 𝐴 – технологический коэффициент;  

𝛼 – константа (коэффициент эластичности выпуска по капиталу); 

𝛽 – константа (коэффициент эластичности выпуска продукции 

по затратам труда). 

Данная функция является одной из самых простых форм 

двухфакторной производственной функции и в разных вариациях 

была применена для различных целей. Так, в [18] рассматрива-

ется и определяется подходящая производственная модель 

Кобба – Дугласа для измерения производственного процесса 

в некоторых отраслях обрабатывающей промышленности Бан-

гладеш. В [1] проведено исследование по применению производ-

ственной функции Кобба – Дугласа к оценке потенциала имита-

ционных стратегий российских IT-компаний, что позволило 

сгруппировать компании по критерию эффективности. 

Итак, в качестве производственных функций для 𝑥(𝑧) и 𝑦(𝑧)  
берётся функция Кобба – Дугласа: 

𝑥(𝑧) = (1 − 𝑝1)𝑟𝑘𝛾(𝑆𝑣, 𝑆𝑢), 𝑦(𝑧) =
𝑝1

𝑛
𝑟𝑘𝛾(𝑆𝑣, 𝑆𝑢),     

т.е. 

 𝑥(𝑧) = (1 − 𝑝1)𝑟𝐶1
𝜸

𝑆𝑣
𝛼𝛾𝑆𝑢

𝛽𝛾, 𝑦(𝑧) =
𝑝1

𝑛
𝑟𝐶1

𝜸
𝑆𝑣

𝛼𝛾𝑆𝑢
𝛽𝛾. 

Принято, что сумма 𝛼𝛾 + 𝛽𝛾 меньше единицы, но близка 

к ней, что характеризует постоянную отдачу от масштаба произ-
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водства. Здесь величины  (1 − 𝑝1) и  𝑝1 ∈ [0,1] определяют, ка-

кую часть дохода получат центр и агенты от производства в ре-

зультате внедрения инноваций, 𝑟, 𝛾 — константы. 

Агент тратит часть своего времени на частную деятельность, 

не связанную с внедрением инноваций. Функция 𝑔𝑖(𝑇𝑚𝑎𝑥 − 𝑣𝑖) от-

ражает доход i-го агента от частной деятельности. Вид этой функ-

ции у разных агентов различен, что соответствует различным ви-

дам деятельности каждого агента. Зависимость предполагается ли-

нейной, а функция – убывающей:  𝑔
𝑖
(𝑇𝑚𝑎𝑥 − 𝑣𝑖) = 𝑑𝑖 ⋅ (𝑇𝑚𝑎𝑥 − 𝑣𝑖), 

где Tmax — максимальное время, которое агент тратит в день на 

трудовую деятельность, 𝑑𝑖 = const. 

Функция ℎ(𝑣𝑖) отражает расходы агента на транспорт, пита-

ние, вспомогательные инструменты и т.д. У всех агентов одина-

ковый вид этой функции. В личные расходы агентов входят по-

стоянные и переменные издержки. В начале личные расходы 

агентов резко растут из-за переменных издержек, так как необхо-

димо приобрести вспомогательные инструменты, учебные посо-

бия и т.д. для процесса внедрения инноваций. В дальнейшем рост 

личных расходов становится более плавным благодаря тому, что 

остаются только постоянные издержки. Поэтому в качестве 

функции ℎ(𝑣𝑖) выбрана возрастающая по своему аргументу вы-

пуклая вверх функция вида ℎ(𝑣𝑖) = 𝑙 ⋅ 𝑣𝑖
𝜆; 𝑙, 𝜆— константы, при-

чём постоянная l характеризует величину личных вложений аген-

тов во внедрение инноваций, 0 < 𝜆 < 1. 

Функция 𝑤(𝑆𝑞) отражает затраты центра на административ-

ный контроль агентов. Чем больше нижний предел времени 𝑞𝑖, 

которое агент может тратить на внедрение инноваций, тем 

больше затраты центра на административный контроль. Исполь-

зованы функции трёх видов: линейная 𝑤(𝑆𝑞) = 𝐶2𝑆𝑞, квадратич-

ная 𝑤(𝑆𝑞) = 𝐶2𝑆𝑞
2и вида 𝑤(𝑆𝑞) = 𝐶2√𝑆𝑞. Обозначим  

𝑎1 = (1 − 𝑝1)𝑟𝐶1
𝛾

, 𝛿 = 𝛼𝛾, 𝜔 = 𝛽𝛾,𝑎2 =
𝑝1

𝑁
𝑟𝐶1

𝛾
𝑆𝑞

𝜗, 

где 𝑎1, 𝑎2 – технологические коэффициенты, 𝛿 – коэффициент 

эластичности по труду, 𝜔 – коэффициент эластичности по капи-

талу, 𝜗 = {
1

2
, 1,  2}. 

Целевые функции субъектов управления в результате при-

мут вид:  



 

Управление большими системами. Выпуск 105 

94 

–  центра при побуждении 

(10) 𝐽0 = 𝑎1𝑆𝑣
𝛿𝑆𝑢

𝜔 − 𝑆𝑢 → max
𝑢

; 

–  центра при принуждении 

(11) 𝐽0 = 𝑎1 ⋅ 𝑆𝑣
𝛿 ⋅ 𝑆𝑢

𝜔 − 𝑆𝑢 − 𝐶2𝑆𝑞
𝜗 → max

𝑞
; 

–  i-го агента, i = 1, 2, …, n 

(12) 𝐽𝑖 = 𝑑𝑖 ⋅ (𝑇𝑚𝑎𝑥 − 𝑣𝑖) + 𝑎2 ⋅ 𝑆𝑣
𝛿 ⋅ 𝑆𝑢

𝜔 − 𝑙 ⋅ 𝑣𝑖
𝜆 → max

𝑣𝑖

.      

Далее исследуется модель (8)–(12), (3)–(5), представляющая 

собой задачу нелинейной оптимизации при наличии ограничений 

с учётом иерархии в отношениях между субъектами управления.  

Центр обеспечивает необходимый уровень внедрения инно-

ваций, используя информационные регламенты игр Гермейера: 

без обратной связи (Г1) при побуждении или принуждении 

и с обратной связью по управлению (Г2) при побуждении или 

принуждении. Алгоритмы построения равновесий изложены 

в [8, 10]. 

3. Аналитическое исследование модели 

Для частного вида входных функций модели в случае одно-

родных агентов (𝑣1 = 𝑣2 = ⋯ = 𝑣𝑛 = 𝑣, 𝑢1 = 𝑢2 = ⋯ = 𝑢𝑛 = 𝑢, 

𝑞1 = 𝑞2 = ⋯ = 𝑞𝑛 = 𝑞) решение игры Г1 при побуждении нахо-

дится аналитически.  

Пусть 𝛿, 𝜔, 𝜆, 𝜗 =
1

2
. Тогда целевые функции субъектов при 

побуждении принимают вид:  

–  центра  

(13) 𝐽0 = 𝑎1 ⋅ (√𝑛 ⋅ 𝑣 ⋅ √𝑛 ⋅ 𝑢) − 𝑛 ⋅ 𝑢 → max
𝑢

; 

–  i-го агента i = 1, 2, …, n 

(14) 𝐽𝑖 = 𝑑 ⋅ (𝑇𝑚𝑎𝑥 − 𝑣) + 𝑎2 ⋅ (√𝑛 ⋅ 𝑣 ⋅ √𝑛 ⋅ 𝑢) − 𝑙 ⋅ √𝑣 → max
𝑣

. 

Определим оптимальные стратегии агентов при заданном 

управлении центра. Для этого решим уравнение 

(15) 
𝜕𝐽𝑖

𝜕𝑣
= −𝑑 + 𝑎2 ⋅ (

𝑛√𝑢

2√𝑣
) −

𝑙

2√𝑣
= 0.     

Отсюда 

(16) 𝑣0 =
(𝑎2

2⋅𝑛2⋅𝑢−2⋅𝑎2⋅𝑙⋅𝑛√𝑢+𝑙2)

4𝑑2 . 
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Следовательно, если 

(17) 
𝜕2𝐽𝑖

𝜕𝑣2 = −𝑎2 ⋅ (
𝑛√𝑢

4√𝑣3
) +

𝑙

4√𝑣3
< 0 

и выполнены (3), (4) или (8), (9), то (16) есть точка макси-

мума (14) и оптимальная стратегия агента задаётся формулой 

𝑣∗ = {

𝑣𝑚𝑖𝑛           если     𝑣0 < 𝑣𝑚𝑖𝑛,

𝑣0            если    𝑣𝑚𝑖𝑛 ≤ 𝑣0 ≤ 𝑣𝑚𝑎𝑥 ,

𝑣𝑚𝑎𝑥       если     𝑣0 > 𝑣𝑚𝑎𝑥.

 

Введем обозначения 

𝑢1̃ =  (
𝑙+2⋅𝑑⋅√𝑣𝑚𝑖𝑛

𝑎2⋅𝑛
)

2

;   𝑢2̃ = (
𝑙+2⋅𝑑⋅√𝑣𝑚𝑎𝑥

𝑎2⋅𝑛
)

2

. 

Тогда в предположении, что 𝑢𝑚𝑖𝑛 ≤ 𝑢1̃ ≤ 𝑢2̃ ≤ 𝑢𝑚𝑎𝑥, с учё-

том (16), (17) получим 

𝑣∗ = {

𝑣𝑚𝑖𝑛           если     𝑢𝑚𝑖𝑛 ≤ 𝑢 < 𝑢1̃,

𝑣0            если    𝑢1̃ ≤ 𝑢 ≤ 𝑢2̃,
𝑣𝑚𝑎𝑥       если     𝑢2̃ < 𝑢 ≤ 𝑢𝑚𝑎𝑥 .

 

При нахождении оптимальной стратегии центра рассматри-

ваются три случая: 𝑢𝑚𝑖𝑛 ≤ 𝑢 < 𝑢1̃ (тогда 𝑣∗ = 𝑣𝑚𝑖𝑛), 
𝑢1̃ ≤ 𝑢 ≤ 𝑢2̃ (𝑣∗ = 𝑣0) и 𝑢2̃ < 𝑢 ≤ 𝑢𝑚𝑎𝑥 (𝑣∗ = 𝑣𝑚𝑎𝑥). 

При 𝑢𝑚𝑖𝑛 ≤ 𝑢 < 𝑢1̃, приравнивая к нулю первую производ-

ную целевой функции центра по его управлению и решая полу-

ченное уравнение, получим 𝑢1
0 =

𝑎1
2𝑣𝑚𝑖𝑛

4
. Эта точка будет точкой 

максимума (13), если 𝑢𝑚𝑖𝑛 ≤ 𝑢0 < 𝑢1̃. В противном случае точ-

кой максимума будет точка 𝑢1̃.   

Если 𝑢1̃ ≤ 𝑢 ≤ 𝑢2̃, то, действуя аналогично, получим, что 

есть одна стационарная точка 𝑢2
0 = (

𝑎1⋅𝑙

2⋅𝑎1⋅𝑎2⋅𝑛−4⋅𝑑
)

2
, но это точка 

минимума и, следовательно, максимум (13) на этом отрезке до-

стигается в одном из его концов. 

Если 𝑢2̃ < 𝑢 ≤ 𝑢𝑚𝑎𝑥, то опять имеется одна стационарная 

точка 𝑢3
0 =

𝑎1
2𝑣𝑚𝑎𝑥

4
, которая является точкой максимума при усло-

вии 𝑢2̃ < 𝑢3
0 ≤ 𝑢𝑚𝑎𝑥. 

Таким образом, решением игры Гермейера Г1 при побужде-

нии в зависимости от входных данных является одна из восьми 

точек: (𝑣𝑚𝑖𝑛;  𝑢𝑚𝑖𝑛), (𝑣𝑚𝑖𝑛;  𝑢1
0), (𝑣𝑚𝑖𝑛;  𝑢1̃), (𝑣0;  𝑢1̃), (𝑣0;  𝑢2̃), 

 (𝑣𝑚𝑎𝑥 ;  𝑢2̃), (𝑣𝑚𝑎𝑥;  𝑢3̃), (𝑣𝑚𝑎𝑥;  𝑢𝑚𝑎𝑥).  
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В случае входных функций общего вида решение строится 

методом качественно репрезентативных сценариев имитацион-

ного моделирования [21]. 

4. Метод качественно репрезентативных сценариев 
имитационного моделирования 

При имитационном моделировании важную роль играет вы-

бор рассматриваемых сценариев имитации. Поскольку полный 

перебор областей допустимых управлений субъектов невозмо-

жен, то необходимо предложить и обосновать разумный способ 

выбора рассматриваемых сценариев игры. Такой способ предла-

гает метод качественно репрезентативных сценариев имитацион-

ного моделирования (КРС ИМ) [21]. Он основан на идее о том, 

что для оценки последствий управляющих воздействий на си-

стему достаточно рассмотреть небольшое число сценариев, отра-

жающих характерные качественно различные пути развития си-

стемы.  

В [21] дано определение множества качественно репрезента-

тивных сценариев (QRS). Пусть Ω = 𝑉1 ×. . .× 𝑉𝑛 × 𝑅1 ×. . .× 𝑅𝑛 – 

множество допустимых управляющих воздействий центра (𝑅𝑖) 

и n агентов ( 𝑉𝑖). При побуждении 𝑅𝑖 = 𝑈𝑖 , при принуждении 

𝑅𝑖 = 𝑄𝑖; 𝑉 = 𝑉1 ×. . .× 𝑉𝑛 = {(𝑣1, 𝑣2, . . . , 𝑣𝑛): 𝑣𝑖 ∈ 𝑉𝑖}; 𝑅 = 𝑅1 ×. . .×
𝑅𝑛 = {(𝑟1, 𝑟2, . . . , 𝑟𝑛): 𝑟𝑖 ∈ 𝑅𝑖}. 

Определение. Множество 

𝑄𝑅𝑆 = 𝑅𝑄𝑅𝑆 × 𝑉𝑄𝑅𝑆 = 𝑅1
𝑄𝑅𝑆

×. .× 𝑅𝑛
𝑄𝑅𝑆

× 𝑉1
𝑄𝑅𝑆

×. . .× 𝑉𝑛
𝑄𝑅𝑆

= 

= {(𝑣, 𝑟) = (𝑣1, . . . , 𝑣𝑛; 𝑟1, . . . , 𝑟𝑛); 𝑣𝑖 ∈ 𝑉𝑖
𝑄𝑅𝑆 ⊂ 𝑉𝑖; 𝑟𝑖 ∈ 𝑅𝑖

𝑄𝑅𝑆 ⊂ 𝑅𝑖} 

называется множеством QRS с точностью Δ, если: 

(a) для ∀ (𝑣, 𝑟)(𝑖), (𝑣, 𝑟)(𝑗) ∈ 𝑄𝑅𝑆  |𝐽0
(𝑖)

− 𝐽0
(𝑗)

| >Δ;       

(b) для ∀(𝑣, 𝑟)(𝑙) ∉ 𝑄𝑅𝑆∃(𝑣, 𝑟)(𝑗) ∈ 𝑄𝑅𝑆:|𝐽0
(𝑙)

− 𝐽0
(𝑗)

| ≤Δ.     

Здесь 𝐽0
(𝑖)

, 𝐽0
(𝑗)

, 𝐽0
(𝑙)

– выигрыш центра; 𝐽0
(𝑠)

= 𝐽0(𝑣(𝑠), 𝑟(𝑠)), 𝑠 = 𝑖, 𝑗, 𝑙.  

Постоянная Δ  должна быть достаточно малой и выбирается 

исходя из содержательного смысла модели. Процесс построения 

множества QRS является итерационным. Ниже приведены алго-

ритмы построения решений для указанных выше моделей 
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при разных информационных регламентах с использованием ме-

тода КРС ИМ на основе [21]. 

Алгоритм построения решения игры Г1методом КРС ИМ. 

1. Начальное множество  𝑄𝑅𝑆(𝑘)имеет вид (k = 0) 

𝑄𝑅𝑆(𝑘) = (𝑅𝑄𝑅𝑆)(𝑘) × (𝑉𝑄𝑅𝑆)(𝑘);  

(𝑅𝑄𝑅𝑆)(𝑘) = ((𝑅1
𝑄𝑅𝑆)(𝑘) × (𝑅2

𝑄𝑅𝑆)(𝑘) × … (𝑅𝑛
𝑄𝑅𝑆)(𝑘));  

(𝑉𝑄𝑅𝑆)(𝑘) = ((𝑉1
𝑄𝑅𝑆

)(𝑘) × (𝑉2
𝑄𝑅𝑆

)(𝑘) ×. . .× (𝑉𝑛
𝑄𝑅𝑆

)(𝑘)) 

Тогда при побуждении 

(𝑅𝑖
𝑄𝑅𝑆)(𝑘) ≡ (𝑈𝑖

𝑄𝑅𝑆)(𝑘) ≡ {𝑢1
(𝑘)

; 𝑢2
(𝑘)

; 𝑢3
(𝑘)

}; 

 (𝑉𝑖
𝑄𝑅𝑆)(𝑘) ≡ {𝑣1

(𝑘)
; 𝑣2

(𝑘)
; 𝑣3

(𝑘)
}; 

𝑢1
(𝑘)

= 𝑢𝑚𝑖𝑛; 𝑢2
(𝑘)

= (𝑢𝑚𝑎𝑥 + 𝑢𝑚𝑎𝑥)/2; 𝑢3
(𝑘)

= 𝑢𝑚𝑎𝑥,  

𝑣1
(𝑘)

= 𝑣𝑚𝑖𝑛; 𝑣2
(𝑘)

= (𝑣𝑚𝑎𝑥 + 𝑣𝑚𝑎𝑥)/2; 𝑣3
(𝑘)

= 𝑣𝑚𝑎𝑥; 

а при принуждении 

(𝑅𝑖
𝑄𝑅𝑆)(𝑘) ≡ (𝑄𝑖

𝑄𝑅𝑆)(𝑘) ≡ {𝑞1
(𝑘)

; 𝑞2
(𝑘)

; 𝑞3
(𝑘)

}; 

𝑞1
(𝑘)

= 0; 𝑞2
(𝑘)

= 𝑣𝑚𝑎𝑥/2; 𝑞3
(𝑘)

= 𝑣𝑚𝑎𝑥;  

(𝑉𝑖
𝑄𝑅𝑆)(𝑘) ≡ {𝑣1

(𝑘)
; 𝑣2

(𝑘)
; 𝑣3

(𝑘)
}; 

𝑣1
(𝑘)

= 𝑞(𝑘); 𝑣2
(𝑘)

= (𝑣𝑚𝑎𝑥 + 𝑞(𝑘))/2; 𝑣3
(𝑘)

= 𝑣𝑚𝑎𝑥. 

2. Во множестве 𝑄𝑅𝑆(𝑘) получается 32𝑛 элементов и все они 

проверяются на выполнение обоих требований в определении 

множества QRS. В результате при необходимости начальное 

множество 𝑄𝑅𝑆(𝑘) сужается или пополняется новыми элемен-

тами. 

3. Фиксируется текущая стратегия центра из (𝑅𝑄𝑅𝑆)(𝑘). 
4. Путем перебора репрезентативных стратегий агентов 

из (𝑉𝑄𝑅𝑆)(𝑘) ищется их оптимальный ответ на выбранную цен-

тром стратегию. 

5. Текущая стратегия центра и оптимальный ответ агентов, 

полученный в пункте 4, подставляются в (10) или (11). Дающие 

больший выигрыш значения сохраняются.  

6. Если просмотрены не все стратегии центра из(𝑅𝑄𝑅𝑆)(𝑘), то 

необходимо перейти на пункт 3 алгоритма. В противном случае 

найдена лучшая пара стратегий из QRS. Она и есть текущее при-

ближение к решению игры. 
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7. Изменяются множества QRS центра и агентов (k = k + 1) – 

они измельчаются в окрестности построенного равновесия сле-

дующим образом. При побуждении для центра r = u, а при при-

нуждении r = q: 

Если (𝑟𝑖
∗)(𝑘−1) = 𝑟1

(𝑘−1)
, то 𝑟1

(𝑘)
= 𝑟1

(𝑘−1)
;  𝑟2

(𝑘)
=

𝑟1
(𝑘−1)

+𝑟2
(𝑘−1)

2
; 

𝑟3
(𝑘)

= 𝑟2
(𝑘−1)

. Если (𝑟𝑖
∗)(𝑘−1) = 𝑟2

(𝑘−1)
, то 𝑟1

(𝑘)
=

𝑟1
(𝑘−1)

+𝑟2
(𝑘−1)

2
;  

𝑟2
(𝑘)

= 𝑟2
(𝑘−1)

; 𝑟3
(𝑘)

=
𝑟2

(𝑘−1)
+𝑟3

(𝑘−1)

2
. Если (𝑟𝑖

∗)(𝑘−1) = 𝑟3
(𝑘−1)

, то 

𝑟1
(𝑘)

= 𝑟2
(𝑘−1)

; 𝑟2
(𝑘)

=
𝑟2

(𝑘−1)
+𝑟3

(𝑘−1)

2
; 𝑟3

(𝑘)
= 𝑟3

(𝑘−1)
. 

Для агентов новые множества 𝑄𝑅𝑆(𝑘) определяются анало-

гично. 

8. Если на некоторой итерации, т.е. при некотором значении 

k окажется, что (𝑟𝑖
∗)(𝑘) = (𝑟𝑖

∗)(𝑘−1); (𝑣𝑖
∗)(𝑘) = (𝑣𝑖

∗)(𝑘−1); 
 𝑖 = 1, 2, . . . , 𝑛, то решение игры методом QRS построено. В про-

тивном случае переход на пункт 3 алгоритма. За конечное число 

итераций решение методом QRS будет построено. 

Алгоритм построения решения игры Г2 методом КРС ИМ. 

1. Аналогично пункту 1 алгоритма нахождения решения игры 

Г1, сформулированному выше, строится начальное множество 

𝑄𝑅𝑆(𝑘), которое при необходимости сужается или пополняется 

новыми элементами. 

2. Находятся значения стратегии наказания для каждого 

агента, если он отказывается сотрудничать с центром. Для этого 

вначале при фиксированном управлении центра из (𝑅𝑄𝑅𝑆)(𝑘) пу-

тём перебора стратегий из (𝑉𝑄𝑅𝑆)(𝑘)находятся равновесия Нэша 

для каждого управления центра – 𝑁𝐸𝑄𝑅𝑆((𝑅𝑄𝑅𝑆)(𝑘)). Затем путём 

полного перебора находится гарантированный выигрыш i-го 

агента, если он отказывается сотрудничать с центром – величина 

𝐿𝑖
𝑃 = max

𝑣𝑖∈𝑁𝐸𝑄𝑅𝑆((𝑅𝑄𝑅𝑆)(𝑘));
min

𝑟𝑖∈(𝑅𝑄𝑅𝑆)(𝑘)
𝐽𝑖(𝑣𝑖, 𝑟𝑖). 

3. Путем полного перебора стратегий центра из 

(𝑅𝑄𝑅𝑆)(𝑘)и агентов из (𝑉𝑄𝑅𝑆)(𝑘)находится максимум (10), (11) 

при выполненных условиях 𝐽𝑖 > 𝐿𝑖
𝑃 , 𝑖 = 1, 2, … , 𝑛.  Величины, его 

доставляющие, и образуют k-е приближение к решению игры Г2. 

Обозначим их (𝑣𝑅 (𝑘), 𝑟𝑅 (𝑘)). 
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4. Аналогично пункту 7 алгоритма нахождения решения игры 

Г1, сформулированному выше, изменяются множества QRS цен-

тра и агентов. 

5. Если на некоторой итерации окажется, что (𝑟𝑖
𝑅)(𝑘) = (𝑟𝑖

𝑅)(𝑘−1); 

 (𝑣𝑖
𝑅)(𝑘) = (𝑣𝑖

𝑅)(𝑘−1); 𝑖 = 1,2, . . . , 𝑛,  то решение игры Г2 методом 

QRS построено. В противном случае переход на пункт 2 алго-

ритма. За конечное число итераций решение игры Г2 методом 

QRS будет построено. 

5. Результаты имитационных экспериментов 

С помощью имитационного моделирования исследуется мо-

дель (10)–(12), (5) с учётом (3), (4) или (8), (9). Были проведены 

имитационные эксперименты в соответствии с приведёнными ал-

горитмами. Входные данные получены на основе [17, 20]. Ими-

тационные эксперименты проводились на компьютере с процес-

сором AMD Ryzen 5 3550H с оперативной памятью 8 Гб на объ-

ектно-ориентированном языке программирования C++. Среднее 

время одного эксперимента для построения множества КРС ИМ 

составило менее секунды. Анализ полученных результатов про-

водился на основе: 

а) суммарного дисконтированного выигрыша центра 

(10), (11), что отвечает принципу Ю.Б. Гермейера анализа си-

стемы с позиции центра; 

б) значения коэффициента системной согласованности [14] 

𝐾 = 𝐽0
∗/𝐽𝑚𝑎𝑥, где 𝐽max =  max

𝑟∈𝑅
max
𝑣∈𝑉

 𝐽0(𝑣, 𝑟), 𝐽0
∗ = 𝐽0(𝑣∗, 𝑟∗) – 

выигрыш центра. Коэффициент системной согласованности по-

казывает, можно ли отказаться от иерархической структуры си-

стемы. Чем он ближе к единице, тем система лучше согласована, 

и необходимость в наличии центра меньше. 

В работе использовались оценочные экспертные данные, по-

этому числовая идентификация модели носит тестовый характер 

и обеспечивает разумное соотношение размерностей величин для 

качественных выводов при анализе результатов моделирования.   

Было проведено порядка 200 численных экспериментов в со-

ответствии со сформулированными ранее алгоритмами построе-

ния равновесий. При этом варьировались величины 𝐶1, r, c, l, p1, 
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𝛼, 𝛽, 𝛾, 𝐶2. C1 от 0,2 до 15; r от 4 до 61; 𝑑1 от 45 до 300 руб./час; 

𝑑2 от 90 до 600 руб./час; 𝑑3 от 135 до 900 руб./час; l от 3 до 99; 

p1 от 0,25 до 0,825; 𝛼 от 0,1 до 0,87;  𝛽 от 0,444 до 0,84;  𝛾  от 0,8 

до 0,99; C2 от 300 до 3000 руб./час. 

В таблице 1 приведены входные параметры проведенных 

имитационных экспериментов, в первом столбце записан номер 

примера. Кроме того, величина 𝛾 в примерах 5, 9 и 14 равна 0, 89. 
0,83 и 0,97 соответственно, а в примерах 17 и 19 – 0,92 и 0,94. 

В остальных примерах 𝛾 = 0,99. 

Таблица 1. Входные параметры численных экспериментов 

№ 𝐶1 R 𝑑1 𝑑2 𝑑3 l p1 𝛼 𝛽 𝐶2 

1 8 20 200 400 600 3 1/3 0,4 0,6 1000 

2 1 55 245 490 735 50 1/2 0,6 0,6 555 

3 15 20 200 400 600 3 1/3 0,4 0,6 1000 

4 10 15 200 400 600 3 1/3 0,4 0,6 1000 

5 2 6 45 90 135 10 1/4 0,7 0,7 623 

6 10 25 200 400 600 3 1/3 0,4 0,6 1000 

7 10 20 100 200 300 3 1/3 0,4 0,6 1000 

8 10 20 150 300 450 3 1/3 0,4 0,6 1000 

9 0,5 13 50 100 150 70 4/7 0,55 0,84 324 

10 10 20 250 500 750 3 1/3 0,4 0,6 1000 

11 10 20 300 600 900 3 1/3 0,4 0,6 1000 

12 1 56 257 514 771 39 0,5 0,6 0,6 627 

13 10 20 200 400 600 3 0,3 0,4 0,6 1000 

14 0,2 11 67 134 201 41 0,8 0,87 0,77 787 

15 10 20 200 400 600 3 0,8 0,4 0,6 1000 

16 10 20 200 400 600 3 1/3 0,1 0,6 1000 

17 0,4 4 93 186 279 47 1/2 0,8 0,8 931 

18 10 20 200 400 600 3 1/3 0,3 0,6 1000 

19 2,4 8 203 406 609 77 0,3 0,69 0,68 856 

20 10 20 200 400 600 3 1/3 0,4 0,45 1000 

 

Результаты имитационных экспериментов для входных дан-

ных из таблицы 1 без учёта затрат на административный кон-

троль со стороны центра приведены в таблице 2. Здесь и далее 

номер примера соответствует номеру примера из таблицы 1;  
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J0 – выигрыш центра, K – коэффициент системной согласованно-

сти при побуждении (Imp) и принуждении (Com) для решения игр 

Гермейера Г1 и Г2. 

Таблица 2. Результаты численных экспериментов 

№ 

Imp Com 

Г1 Г2 Г1 Г2 

J0 K J0 K J0 K J0 K 

1 63584 0,93 68305 1 67078 1 67078 1 

2 28170 0,41 67906 1 36051 1 36051 1 

3 64844 0,92 68770 0,98 68833 0,99 68835 1 

4 48279 0,93 50966 0,99 50497 1 50501 1 

5 4382 0,6 6370 0,88 5868 1 5870 1 

6 86538 0,98 86816 0,98 87168 1 87168 1 

7 68145 0,97 69275 0,99 68830 1 68835 1 

8 68205 0,97 68482 0,98 68834 1 68835 1 

9 –223 –0,11 1966 1 1966 1 1966 1 

10 66612 0,95 68771 0,98 68830 1 68835 1 

11 66612 0,95 69275 0,99 68830 1 68835 1 

12 28955 0,42 69414 1 36788 1 36788 1 

13 68458 0,97 69399 0,98 69747 1 69751 1 

14 5548 0,98 5645 1 4341 1 4341 1 

15 14609 0,92 15339 0,96 14750 1 14750 1 

16 33411 0,78 42807 1 23774 1 23774 1 

17 –2716 –1,3 189 0,09 1023 1 1019 0,99 

18 62664 0,93 66263 0,98 56352 1 56352 1 

19 7895 0,47 12936 0,77 15435 0,99 15402 1 

20 8330 0,28 27023 0,93 21099 1 21099 1 

 

В таблице 3 приведены значения индекса системной согла-

сованности для решений игр Гермейера Г1 и Г2 для входных дан-

ных из таблицы 1 в случае разного вида функций затрат на адми-

нистративный контроль со стороны центра. 
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Таблица 3. Результаты экспериментов с затратами  

на административный контроль 

№ 

𝑤(𝑆𝑞) = 𝐶2𝑆𝑞 𝑤(𝑆𝑞) = 𝐶2𝑆𝑞
2 𝑤(𝑆𝑞) = 𝐶2√𝑆𝑞 

Г1 Г2 Г1 Г2 Г1 Г2 

K K K K K K 

1 0,65 1 0,65 1 0,89 1 

2 0,28 1 –6,16 1 0,89 1 

3 0,99 0,99 0,99 0,99 0,99 0,99 

4 0,65 0,94 0,63 0,94 0,9 0,96 

5 0,37 0,86 0,38 0,87 0,55 0,86 

6 0,86 0,95 0,82 0,95 0,96 0,98 

7 0,95 0,94 0,94 0,94 0,95 0,97 

8 0,83 0,94 0,81 0,94 0,95 0,97 

9 –0,68 1 –0,67 1 –0,14 1 

10 0,82 0,94 0,81 0,94 0,92 0,97 

11 0,68 0,94 0,64 0,94 0,92 0,97 

12 0,23 1 –6,83 1 0,88 1 

13 0,83 0,94 0,81 0,94 0,92 0,97 

14 –0,16 1 –0,16 1 –0,03 1 

15 0,56 0,72 –1,7 –0,11 0,82 0,86 

16 0,69 1 0,7 1 0,72 1 

17 –6,65 0,56 –17,7 0,56 –4,5 0,56 

18 0,6 1 0,6 1 0,87 1 

19 0,07 0,87 0,05 0,87 0,76 0,9 

20 0,09 1 –1,5 1 0,67 1 

 

В таблице 4 приведены результаты счёта без учёта условия 

гомеостаза («жизнеспособности») для входных данных из таб-

лицы 1.  

В таблице 5 приведены значения индекса системной согла-

сованности для входных данных из таблицы 1 в случае разного 

вида функций затрат на административный контроль. 

  



 

Управление в социально-экономических системах 

103 

Таблица 4. Результаты численных экспериментов  

при отсутствии условия гомеостаза («жизнеспособности») 

№ 

Imp Com 

Г1 Г2 Г1 Г2 

J0 K J0 K J0 K J0 K 

1 79717 0,6 131342 1 67078 1 67078 1 

2 28170 0,41 67906 1 36051 1 36051 1 

3 217224 0,84 257671 1 128867 1 128867 1 

4 73599 0,6 121889 1 62454 1 62454 1 

5 4676 0,21 22175 1 13059 1 13059 1 

6 179306 0,84 213149 1 107091 1 107091 1 

7 147867 0,88 167519 1 84773 1 84773 1 

8 140445 0,84 167519 1 84773 1 84773 1 

9 –223 –0,11 1966 1 1966 1 1966 1 

10 103132 0,62 167519 1 84773 1 84773 1 

 

Таблица 5. Результаты экспериментов с затратами на админи-

стративный контроль при отсутствии условия гомеостаза 

№ 
𝑤(𝑆𝑞) = 𝐶2𝑆𝑞  𝑤(𝑆𝑞) = 𝐶2𝑆𝑞

2 𝑤(𝑆𝑞) = 𝐶2√𝑆𝑞  

Г1 Г2 Г1 Г2 Г1 Г2 

1 0,65 1 0,65 1 0,9 1 

2 0,51 1 0,5 1 0,89 1 

3 0,75 1 0,67 1 0,95 1 

4 0,52 1 0,51 1 0,89 1 

5 0,16 1 0,17 1 0,67 1 

6 0,71 1 0,66 1 0,94 1 

7 0,76 1 0,76 1 0,93 1 

8 0,67 1 0,66 1 0,92 1 

9 –0,68 1 –0,67 1 –0,14 1 

10 0,66 1 0,66 1 0,92 1 

6. Анализ результатов 

Анализ проведённых экспериментов позволил сделать ряд 

выводов. 
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1. В игре Гермейера Г1 при побуждении коэффициент си-

стемной согласованности меняется от значения K = 0,28 (при-

мер 20) до K = 0,98 (пример 14). В случае принуждения в игре Г1 

согласованность системы увеличивается, и коэффициент систем-

ной согласованности в ряде примеров возрастает до единицы 

(примеры 1, 4–20). В этом случае необходимость в иерархиче-

ском управлении исчезает. 

2. В игре Г2 для большинства входных данных коэффициент 

системной согласованности близок к единице при побуждении 

(примеры 1–4, 6–16, 18, 20), а при принуждении строго равен еди-

нице (примеры 1–16, 18–20).  

3. В игре Г2 центр получает больший выигрыш, чем в игре Г1. 

При этом разница достигает 58% (пример 12), 22% (пример 16) 

и 70% (пример 20). При принуждении в ряде примеров выигрыши 

центра и коэффициент системной согласованности одинаковы для 

обоих информационных регламентов (примеры 1, 6, 14–20). 

4. Выигрыши агентов, центра и коэффициент системной со-

гласованности с ростом эффективности использования ПАО 

КППР, т.е. коэффициентов C1 и r, вначале растут (примеры 1, 4, 

6). При дальнейшем росте коэффициентов в силу условия (5) вы-

игрыши агентов, центра и коэффициент системной согласованно-

сти K начинают вести себя хаотично в случае побуждения (при-

меры 1, 3), а в случае принуждения становятся постоянными 

(пример 20). 

5. Выигрыш агентов прямо пропорционален, а выигрыш цен-

тра и коэффициент системной согласованности в случае побуж-

дения – обратно пропорциональны доходу агентов от частной де-

ятельности. В случае принуждения выигрыш центра и коэффици-

ент системной согласованности K при увеличении 𝑑1, 𝑑2, 𝑑3 

не меняются (примеры 7, 8, 10, 11).  

6. При увеличении личных вложений агентов во внедрение 

инноваций их выигрыши падают, а выигрыш центра и коэффици-

ент системной согласованности не меняются (пример 11).  

7. При увеличении части дохода, который получают агенты 

от производства в результате использования ПАО КППР (коэф-

фициент p1), меняются значения выигрышей центра и агентов, 

а также коэффициент системной согласованности. При принуж-
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дении коэффициент системной согласованности неизменен и ра-

вен единице. Выигрыши агентов прямо пропорциональны значе-

нию p1, коэффициент системной согласованности (в случае по-

буждения) и выигрыш центра – обратно пропорциональны.  

8. При увеличении коэффициентов эластичности по труду и 

по капиталу увеличиваются выигрыши центра и агентов, коэффи-

циент системной согласованности, кроме игры Г2, где коэффици-

ент системной согласованности равен или близок к единице неза-

висимо от коэффициентов эластичности. 

9. В играх Г1 и Г2 при принуждении без затрат на админи-

стративный контроль агентов коэффициент системной согласо-

ванности часто близок к единице (примеры 1–20). Однако при 

учёте затрат на административный контроль агентов ситуация 

иная. В игре Г1 коэффициент системной согласованности меня-

ется от K = 0,65 до K = 0,99 (примеры 1, 3). В игре Г2 коэффици-

ент системной согласованности в большинстве примеров высо-

кий и меняется от K = 0,93 до K = 1 (примеры1–4, 6–14). Мини-

мальная согласованность интересов K = 0,56 наблюдается в при-

мере 17.   

10.  При принуждении с учётом затрат на административный 

контроль агентов меняется и выигрыш центра. В игре Г1 центр 

получает меньший выигрыш. Разница достигает 95% (при-

мер 19). В игре Г2 в большинстве примеров центр также получает 

меньший выигрыш. Разница достигает в этом случае 44% (при-

мер 17). Если центр не накладывает ограничения на управления 

агентов, то выигрыши с затратами и без них на административ-

ный контроль агентов примерно одинаковы (пример 3). 

11.  Выигрыш центра и коэффициент системной согласованно-

сти выше в случае квадратичной функции контроля центром 

агентов. При увеличении затрат центра на контроль агентов его 

выигрыш и коэффициент системной согласованности ожидаемо 

уменьшаются. 

12. В случае отказа от учёта условия гомеостаза (отсутствии 

ограничений на уровень внедрения инноваций (𝑘(𝑆𝑣 , 𝑆𝑢))) коэф-

фициент системной согласованности для достаточно широкого 

класса входных функций заметно понижается при принуждении 

с затратами на административный контроль и побуждении в игре 
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Гермейера Г1. Например, для входных данных примера 5 при по-

буждении он уменьшается в 3 раза, а при принуждении – при-

мерно в 2 раза. В игре Гермейера Г2 при побуждении и при при-

нуждении при отсутствии условия гомеостаза коэффициент си-

стемной согласованности равен единице (примеры 1–10). 

И центр, и агенты в этом случае могут выбрать более выгодные 

для себя стратегии, не учитывая необходимость внедрения инно-

ваций. 

7. Заключение 

Математическое моделирование процесса внедрения инно-

ваций в организации помогает выбрать информационный регла-

мент и метод иерархического управления, которые обеспечивают 

эффективность процесса внедрения и лучшую системную согла-

сованность. В процессе исследования математической модели 

при различных информационных регламентах были сделаны сле-

дующие выводы и рекомендации по внедрению инноваций в ор-

ганизации: 

 при учёте затрат центра на административный контроль ис-

пользование побуждения для него в большинстве случаев даёт 

больший выигрыш, чем принуждение; 

 для успешного внедрения инноваций необходим учёт усло-

вия гомеостаза;  

 успешное внедрение инноваций возможно как при исполь-

зовании побуждения, так и принуждения. При этом центр должен 

обладать значительными ресурсами (административными или 

экономическими) для воздействия на агентов. 
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Abstract: A two-level management system for the innovation implementation in 

organizations is studied, taking into account the conditions of their "life-ability". The 

main task of mathematical modeling of the coordination of private and public 

interests in innovation implementation models is determining the appropriate 

strategy for the promotion of innovations. The problem is considered in a 

hierarchical formulation. There is one top-level management entity (center) and 

several lower-level entities (agents). The center is responsible for the result of 

innovation implementation, and agents are directly involved in implementation. The 

center manages the innovation implementation using various information 

regulations. Agents promote innovations and they receive funds from the center. At 

the same time, agents bear personal expenses. Agents have their own private interest, 

namely, they are engaged in third-party activities, that also bring them income. These 

activities are not related to the innovation implementation. Algorithms for 

constructing solutions to Germeyer's games in motivation and compulsion are 

indicated. Numerical solutions are constructed using the method of qualitatively 

representative simulation scenarios. Simulation experiments were conducted, the 

analysis of the results obtained was given. 
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tation. 

 

УДК 519.83 

ББК 22.18 

DOI: 10.25728/ubs.2023.105.5 

Статья представлена к публикации  

членом редакционной коллегии В.М. Вишневским. 

Поступила в редакцию 12.04.2023. 

Опубликована 30.09.2023. 



 

Управление большими системами. Выпуск 105 

110 

РАЗРАБОТКА РЕКОМЕНДАТЕЛЬНОЙ МОДЕЛИ 

ПОДДЕРЖКИ ПРИНЯТИЯ РЕШЕНИЯ ПРИ ВЫБОРЕ 

ПРОДУКТОВ ПОЛЬЗОВАТЕЛЕМ 

Квятковская И. Ю.1, Во Тхи Хуен Чанг2,  

Чан Куок Тоан3 

(Астраханский государственный технический  

университет, Астрахань) 

Рекомендательные системы используются для прогнозирования предпочте-

ний пользователей в отношении определенного продукта или услуги, а также 

для рекомендации пользователю подходящих продуктов или услуг. Многие 

методы, используемые в интеллектуальном анализе данных, связанные с клас-

сификацией или построением ассоциативных правил, применяются в реко-

мендательных системах. Предлагается новая рекомендательная модель, со-

четающая ассоциативные правила и меры индекса статистической имплика-

ции. В предлагаемой модели меры поддержки и достоверности используются 

для создания ассоциативных правил, а мера индекса статистической импли-

кации используется для фильтрации набора правил и ранжирования рекомен-

даций. Предложенные модель и алгоритмы использованы для построения ре-

комендательного результата по известному набору данных. 

Ключевые слова: рекомендательная система, рекомендательная мо-

дель, анализ статистической импликации, индекс статистической им-

пликации, алгоритм Apriori, ассоциативные правила. 

В настоящее время с быстрым развитием интернета и соци-

альных сетей количество информации, к которой люди имеют 

доступ, увеличивается. Каждый день пользователи сталкивают-

ся с многочисленными источниками информации: информаци-

ей, которой обмениваются по электронной почте, статьями 

в Интернете, сообщениями в социальных сетях, рекламной ин-

формацией с сайтов электронной коммерции [1–3, 5, 6, 13]. 

С увеличением всевозможной информации становится все труд-

нее выбирать полезную информацию для принятия решений 

пользователями компьютеров и смарт-устройств. Рекоменда-

тельные системы, которые широко применяются во многих об-

                                                           
1 Ирина Юрьевна Квятковская, д.т.н., профессор (i.kvyatkovskaya@astu.org). 
2 Во Тхи Хуен Чанг (vthtrang@mail.ru). 
3Чан Куок Тоан, к.т.н. (hoaivan219@mail.ru). 
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ластях, рассматриваются как решение, помогающее пользовате-

лям эффективно выбирать информацию. Рекомендательная си-

стема способна автоматически анализировать информацию, 

классифицировать, выбирать и предоставлять пользователям 

интересующие продукты, товары и услуги посредством приме-

нения статистических и интеллектуальных методов (экспертные 

системы, нечеткие системы, системы поддержки принятия ре-

шений) [1–3]. Таким образом, исследование рекомендательных 

систем является актуальным. 

Одной из основных функций рекомендательных систем яв-

ляется оценка рейтингов товаров, которые не были рассмотрены 

пользователями. Эта оценка обычно основывается на собствен-

ных или других отзывах пользователей. Для рекомендации бу-

дут использоваться продукты с наивысшими оценками.  

Формализуем задачу рекомендации: пусть 

U = {u1, u2,…, uM} – множество пользователей, 

а I = {i1, i2,…, iN} – множество продуктов. Функция f (ua, ij) из-

меряет релевантность (или рейтинг) продукта ij для пользовате-

ля ua, f : U× I→ R, где R – упорядоченное множество. Для каж-

дого пользователя ua  U необходимо найти такой продукт ij  I, 

чтобы функция f (ua, ij) имела максимальное значение: 

(1) ),(maxarg, ka
Ii

ja iufiUu

k

 . 

Задача рекомендации встроена в общую модель, как пока-

зано на рис. 1. 

Среди рекомендательных моделей самыми успешными яв-

ляются модели совместной фильтрации, такие как:  

–  рекомендательная модель совместной фильтрации на ос-

нове пользователей; 

–  рекомендательная модель совместной фильтрации на ос-

нове продукта; 

–  рекомендательная модель совместной фильтрации на ос-

нове ассоциативных правил.  

 



 

Управление большими системами. Выпуск 105 

112 

 

Рис. 1. Общая схема рекомендации 

Все модели учитывают, что взаимное влияние пары пользо-

вателей симметрично. На практике роли и взаимодействия меж-

ду двумя пользователями часто асимметричны, что может со-

здать определенную предвзятость в рекомендациях. Так более 

опытный пользователь-эксперт имеет большее влияние на дру-

гих, менее опытный эксперт или новичок не сможет достичь 

противоположного эффекта. Существующие рекомендательные 

системы сосредоточены только на логическом решении вопроса 

о наличии или отсутствии взаимосвязи между пользователем 

и продуктами, однако не используют импликативное отношение 

«если А, то В» между ними, определяя степень соответствия на 

основе статистических данных о взаимозависимостях между 

пользователями и выбранными продуктами. В данном случае 

импликативное отношение рассматривается как отношение, ос-

нованное на знаниях о связях между пользователем и элемента-

ми данных, необходимых для выработки рекомендации. Ис-

пользование асимметричного подхода представляет большой 

интерес для минимизации систематической ошибки из-за ука-

занного выше различия в результатах рекомендаций.  

Для учета асимметричного влияния пользователей и оценки 

импликативной связи между пользователем и продуктами ис-

пользуется метод анализа статистической импликации, или ме-
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тод импликативного статистического анализа (англ. «Statistical 

Implicative Analysis (SIA)», [8–10]). 

Данный метод анализа данных позволяет обнаружить 

правила a → b (a – атрибуты объектов, принадлежащих 

множествуA, b – атрибуты объектов во множестве B) 

в асимметричной форме «если a, то почти b» или «в какой 

степени b соответствует импликации a». Целью метода является 

обнаружение тенденций в наборе атрибутов (переменных) 

с использованием меры индекса статистической импликации, 

формула которого приведена ниже. В отличие от других 

методов анализа данных, метод анализа cтатистической 

импликации ориентирован на асимметричные соотношения 

между переменными (когда привлекательная ценность правила 

a → b отличается от привлекательной ценности правила b → a). 

Мера импликации используется для обнаружения правил, 

которые имеют сильную взаимосвязь импликации между 

атрибутами левой стороны и атрибутами правой части. Анализ 

статистической импликации применяется во многих областях, 

таких как образование, психология, информационные 

технологии и т. д. 

Предположим, что набор E имеет n
 
объектов или продук-

тов. Пусть A  E – подмножество объектов, удовлетворяющих 

атрибутам a; B  E– подмножество объектов, удовлетворяющих 

атрибутам b; A  (соответственно B ) является дополнением A 

(соответственно B); nA = |A|, nB = |B| – количество элементов 

множеств A и B; число контрпримеров BAn
BA

  – это число 

объектов, которые удовлетворяют свойству a, но не удовлетво-

ряют свойству b. Пусть X и Y – два случайных набора с количе-

ством элементов nX = nA и nY = nB соответственно. Предположим, 

что в процессе выборки случайная величина X Y  следует 

распределению Пуассона с параметром 

(2) 
.

.
A B

n n

n
   

Правило a → b называется приемлемым для заданного по-

рога α, если 
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(3) [| ( | | |] ,Рr X Y A B      

где Pr – вероятность случайной величины. 

Рассмотрим случай 0
B

n  . Тогда согласно распределению 

Пуассона вероятность случайной величины || YX   определя-

ется следующим образом: 

(4) 
( ) ( )

( , ) | | / .A B A Bn n n n n n
Q A B X Y

n n

  
   
 

 

В эксперименте наблюдаемое значение ( , )q A B  для ( , )Q A B  

определяется следующим образом: 

(5) 
( ) ( )

( , ) /A B A B

AB

n n n n n n
q A B n

n n

  
  
 

. 

Это значение называется индексом статистической импли-

кации. 

С использованием метода анализа статистической импли-

кации разработана рекомендательная модель, основанная на ин-

дексе статистической импликации (ИСИ). Модель рассматрива-

ет взаимосвязь между набором условных атрибутов и набором 

атрибутов решения на основе асимметричного подхода. Модель 

выбирает ассоциативные правила, которые отфильтрованы по 

величине ИСИ, чтобы рекомендовать пользователю продукты. 

Рекомендательная модель определяется следующим образом: 

(6) },,,{ FRuIURS  , 

где U = {u1, u2,…, uM} – множество из M пользователей;  

I = {i1, i2,…, ik, ik+1,…, iN} – набор из N продуктов (атрибутов) 

для каждого пользователя, где Iсо = {i1, i2,…, ik} – набор услов-

ных продуктов (атрибутов), определяющих условия для выра-

ботки рекомендации; Ire = {ik+1,…, iN} – набор продуктов (атри-

бутов), определяющих решения; Ru = {r1, r2,…, rR} – набор ас-

социативных правил, выбранных для модели; F : U× I  Ru – 

вычислительные функции для поиска ассоциативных правил 

Rua = {r1, r2,…, rRA}, где RA – число ассоциативных правил 

с рекомендательной ценностью для пользователя ua, вычислен-

ной на основе меры индекса статистической импликации. 
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Процесс работы рекомендательной модели, основанной на 

ИСИ, представлен на рис. 2. В основе ее лежит анализ транзак-

ций – информации, хранящейся в базах данных продавцов това-

ров, о выборе (покупке) пользователем u  U товара i  I.  

 

Рис. 2. Процесс работы рекомендательной модели  

на основе меры индекса статистической импликации 

На основе предлагаемой рекомендательной модели разра-

ботана процедура для поддержки принятия решения по выбору 

продуктов для рекомендации пользователю.  

Входные данные: набор данных транзакции (извлекаются из 

базы данных о пользователях и продуктах); набор значений 

условных атрибутов (Iсо) пользователя ua; набор продуктов (ат-

рибутов), определяющих решения Ire = {ik+1,…, iN}.  

Выходные данные: набор ассоциативных правил, поддер-

живающих выбор значения атрибута решения. 

В процедуре выделены 4 главных этапа.  

Этап 1.  Создать множество правил ассоциации Ru на основе 

атрибута решения из набора данных транзакции. 

Этап 2.  Произвести определение значений параметров стати-

стической импликации для множества правил ассоциации. n; nA; 

nB; 
BA

n . 

Этап 3.  Произвести расчет значения ИСИ для каждого ассо-

циативного правила rj, принадлежащего множеству правил Ru. 
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Этап 4.  Выбрать набор рекомендательных правил для поль-

зователя ua.  

4.1. Для каждого правила ассоциации на основе атрибута 

решения правила rj, принадлежащего набору правил Ru, выпол-

нить: если (<Значение атрибутов левой части правила rj>  

 <Множеству значений Ic>), то поместить правило ассоциации 

rj в набор рекомендательных правил для пользователя ua. 

4.2. Сортировать набор рекомендательных правил для поль-

зователя ua в соответствии с ИСИ. 

4.3. Выбрать правила с наивысшим значением ИСИ для ре-

комендации пользователю ua. 

Конец. 

Для реализации этапа 1 разработан алгоритм генерации ас-

социативных правил на основе атрибутов решения, основанный 

на алгоритме генерации ассоциативных правил Apriori [4] 

и примененный для правосторонних ассоциативных правил, со-

держащих атрибуты решения.  

Сначала с использованием порога меры поддержки (англ. 

Support) (min_sup) для поиска часто встречающихся наборов 

атрибутов осуществляется поиск наборa из одного атрибута (L1). 

Далее L1 используется для нахождения набора из двух атрибутов 

(L2) и так до тех пор, пока набор из p атрибутов (Lp) больше не 

будет найден.  

Далее на основе порога меры достоверности (англ. Confi-

dence) (min_conf) формируются правила ассоциации рекоменда-

тельной модели из часто встречающихся атрибутов. 

Псевдокод алгоритма генерации правила ассоциации на ос-

нове атрибутов решения. 

Входные данные:  транзакции о пользователях и продуктах) 

T, Ic – набор условных продуктов (атрибутов), определяющих 

условия для выработки рекомендации; Ir – набор продуктов (ат-

рибутов), определяющих решения; min_sup, min_conf – порого-

вые значения показателей «поддержка» и «достоверность», ха-

рактеризующих ассоциативные правила. 

Выходные данные: набор ассоциативных правил для реко-

мендательной модели. 

Начало 
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Шаг 1.  Просмотреть весь набор транзакций T, чтобы опреде-

лить поддержку (меру Support) S (процент транзакций, содер-

жащих определенный набор данных) для набора из одного про-

дукта: 

(7) 
||

,

T
S

aсодержащихтранзакцийКоличество
a  , 

где a – заданный продукт, |T| – общее количество транзакций, 

равное количеству пользователей. Если в базе данных по каж-

дому пользователю хранится единственная транзакция, то 

|T| = M. 

Далее, сравнивая Sa с минимальным пороговым значением 

min_sup, отобрать подмножество наборов из одного продук-

та (L1). 

Шаг 2.  Далее, используя набор Lp–1, полученный на преды-

дущем шаге, сгенерировать Lp – подмножество наборов из p 

продуктов, используя для отбора заданное минимальное поро-

говое значение min_sup. 

Шаг 3.  Повтор действия с шага 2 до тех пор, пока сгенериро-

ванный набор продуктов не будет пуст.  

Окончательно получим L = {L1, L2,…, Lp} – множество 

наборов продуктов. 

Шаг 4.  Разбить каждый набор Lt  L (t  {1, …, p}) на эле-

ментарные одноэлементные непустые подмножества V  Lt. 

Шаг 5.  Для каждого непустого подмножества V  Lt cгене-

рировать правила Rur = {V →  (Lt \ V) | (Lt \ V)  Ir}. Вычислить 

Conf (V → (Lt \ V)) ≥ min_conf, где Conf (V  (Lt \ V)) – достовер-

ность ассоциативного правила V  (Lt \ V), определяемая по 

формуле: 

(8) 
( )

( ( \ ))
( )

t

t

S V
Conf V L V

S L
  , 

где S(Lt) – поддержка набора Lt; S(V) – поддержка набора V. 

Конец. 

Пример 1.  Используем набор из трех продуктов 

I = {i1, i2, i3}. Зададим Ic = {i1, i2} – набор условных продуктов 

(атрибутов), определяющих условия для выработки рекоменда-

ции, Ir = {i3} – набор продуктов (атрибутов), определяющих ре-
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шения. Например, i1 = {1; 2; 3}; i2 = {0,5; 1,0; 1,5}, i3 = {A; B} 

(таблица 1).  

Таблица 1. Набор исходных данных  
 Продукты 

№ транкзакции i1 i2 i3 

1 2 1,0 A 

2 1 1,5 A 

3 3 0,5 B 

4 3 0,5 B 

5 2 1,0 A 

6 1 1,5 A 

7 1 1,5 A 

8 2 1,0 A 

9 3 0,5 B 

10 2 1,0 A 

Применение алгоритма генерации правила ассоциации на 

основе атрибута решения с заданными min_sup = 0,01 и 

min_conf = 0,5 включает следующие шаги: 

Найти среди транзакций часто встречающиеся наборы из 

одного элемента, вычислить поддержку S для каждого набора. 

Результат вычисления представлен в таблице 2. 

Таблица 2. Результат вычисления поддержки для набора  

из одного элемента 
Набор из 1 элемента Поддержка S 

{i1 = 1} 0,3 

{i1 = 2} 0,4 

{i1 = 3} 0,3 

{i2 = 1,0} 0,4 

{i2 = 1,5} 0,3 

{i2 = 0,5} 0,3 

{i3 = A} 0,7 

{i3 = B} 0,3 

 

Сравнить значение поддержки с заданным min_sup = 0,01. 

Результат формирования набора L1 представлен в таблице 3. 
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Таблица 3. Формирование L1 

Набор из 1 элемента Поддержка 

{i1 = 1} 0,3 

{i1 = 2} 0,4 

{i1 = 3} 0,3 

{i2 = 1,0} 0,4 

{i2 = 1,5} 0,3 

{i2 = 0,5} 0,3 

{i3 = A} 0,7 

{i3 = B} 0,3 

 

Найти часто встречающиеся наборы из двух элементов. 

Вычислить поддержку S для 2-элементного набора. Результаты 

вычисления представлены в таблице 4. 

Таблица 4. Результаты вычисления поддержки для набора 

из двух элементов 
Набор из 2 элементов Поддержка S 

{i1 = 1; i1 = 2} 0,0 

{i1 = 1; i1 = 3} 0,0 

{i1 = 1; i2 = 1,0} 0,0 

{i1 = 1; i2 = 1,5} 0,3 

{i1 = 1;i2 = 0,5} 0,0 

{i1 = 1; i3 = A} 0,3 

{i1 = 1; i3 = B} 0,0 

{i1 = 2; i1 = 3} 0,0 

{i1 = 2; i2 = 1,0} 0,4 

{i1 = 2; i2 = 1,5} 0,0 

{i1 = 2; i2 = 0,5} 0,0 

{i1 = 2; i3 = A} 0,4 

{i1 = 2; i3 = B} 0,0 

{i1 = 3; i2 = 1,0} 0,0 

{i1 = 3; i2 = 1,5} 0,0 

{i1 = 3; i2 = 0,5} 0,3 

{i1 = 3; i3 = A} 0,0 

{i1 = 3; i3 = B} 0,3 

{i2 = 1,0; i2 = 1,5} 0,0 

{i2 = 1,0; i2 = 0,5} 0,0 

{i2 = 1,0; i3 = A} 0,4 
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Таблица 4 (продолжение) 

{i2 = 1,0; i3 = B} 0,0 

{i2 = 1,5; i2 = 0,5} 0,0 

{i2 = 1,5; i3 = A} 0,3 

{i2 = 1,5; i3 = B} 0,0 

{i2 = 0,5; i3 = A} 0,0 

{i2 = 0,5; i3 = B} 0,3 

{i3 = A; i3 = B } 0,0 

 

Выбрать наборы, сравнивая значение поддержки с задан-

ным min_sup = 0,01. Результат формирования L2 представлен 

в таблице 5. 

Таблица 5 Формирование L2 

Набор из 2 элементов Поддержка 

{i1 = 1; i2 = 1,5} 0,3 

{i1 = 1; i3 = A} 0,3 

{i1 = 2; i2 = 1,0} 0,4 

{i1 = 2; i3 = A} 0,4 

{i1 = 3; i2 = 0,5} 0,3 

{i1 = 3; i3 = B} 0,3 

{i2 = 1,0; i3 = A} 0,4 

{i2 = 1,5; i3 = A} 0,3 

{i2 = 0,5; i3 = B} 0,3 

 

Найти часто встречающиеся наборы из трёх элементов. Вы-

числить поддержку S для 3-элементного набора. Результаты вы-

числения представлены в таблице 6. 

Таблица 6. Результаты создания частого набора  

из трёх элементов 
Набор из 3 элементов Поддержка S 

{i1 = 1; i2 = 1,5; i3 = A} 0,3 

{i1 = 1; i2 = 1,5; i3 = B} 0,0 

{i1 = 1; i2 = 1,0; i3 = A} 0,0 

{i1 = 1; i2 = 1,0; i3 = B} 0,0 

{i1 = 1; i2 = 0,5; i3 = A} 0,0 

{i1 = 1; i2 = 0,5; i3 = B} 0,0 
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Таблица 6 (продолжение) 

{i1 = 2; i2 = 1,0; i3 = A} 0,3 

{i1 = 2; i2 = 1,0; i3 = B} 0,0 

{i1 = 2; i2 = 1,5; i3 = A} 0,0 

{i1 = 2; i2 = 1,5; i3 = B} 0,0 

{i1 = 2; i2 = 0,5; i3 = A} 0,0 

{i1 = 2; i2 = 0,5; i3 = B} 0,0 

{i1 = 3; i2 = 0,5; i3 = A} 0,0 

{i1 = 3; i2 = 0,5; i3 = B} 0,3 

{i1 = 3; i2 = 1,5; i3 = A} 0,0 

{i1 = 3; i2 = 1,5; i3 = B} 0,0 

{i1 = 3; i2 = 1,0; i3 = A} 0,0 

{i1 = 3; i2 = 1,0; i3 = B} 0,0 

Сравнить значение поддержки с заданным min_sup = 0,01. 

Результат формирования L3 представлен в таблице 7. 

Таблица 7 Формирование L3 

Набор из 3 элементов Поддержка 

{i1 = 1; i2 = 1,5; i3 = A} 0,3 

{i1 = 2; i2 = 1,0; i3 = A} 0,3 

{i1 = 3; i2 = 0,5; i3 = B} 0,3 

 

Окончательно был сгенерирован набор ассоциативных пра-

вил на основе атрибутов, определяющих решения, включая 

9 правил, представленных в таблице 8. 

Таблица 8. Результат создания ассоциативных правил  

на основе атрибута решения 
№ Ассоциативные правила Поддержка Достоверность 

1 {i1 = 1} => {i3 = A} 0,3 1,0 

2 {i2 = 1,5} => {i3 = A} 0,3 1,0 

3 {i1 = 3} => {i3 = B} 0,3 1,0 

4 {i2 = 0,5} => {i3 = B} 0,3 1,0 

5 {i2 = 1} => {i3 = A} 0,4 1,0 

6 {i1 = 2} => {i3 = A} 0,4 1,0 

7 {i1 = 1;,i2 = 1,5} => {i3 = A} 0,3 1,0 

8 {i1 = 3; i2 = 0,5} => {i3 = B} 0,3 1,0 

9 {i1 = 2; i2 = 1} => {i3 = A} 0,4 1,0 
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Для реализации шага 2 процедуры разработана методика 

формирования меры интенсивности статистической имплика-

ции для правила ассоциации, состоящая из следующих шагов: 

Шаг 1.  Производится преобразование набора данных тран-

закции в разреженную бинарную матрицу. 

Шаг 2.  Производится преобразование набора правил ассоци-

ации в разреженную бинарную матрицу. 

Шаг 3.  Производится вычисления значений параметров ста-

тистической импликации правила ассоциации. 

Шаг 4.  Производится вычисления значения индекса стати-

стической импликации для правила ассоциации. 

Для определения значений параметров n; nA; nB; 
BA

n  каждо-

го правила ассоциации предлагается метод преобразования 

набора данных транзакции и правил ассоциации в разреженную 

бинарную матрицу. Это преобразование преследует две основ-

ные цели. 

Во-первых, большинство алгоритмов генерации ассоциа-

тивных правил основано на бинарных данных, что удобно при 

экспериментальной реализации. 

Во-вторых, с разреженной бинарной структурой матрицы 

алгоритм может решить проблему пространства для хранения 

больших наборов данных и увеличить скорость обработки алго-

ритмов модели за счет того, что алгоритмы обрабатывают дан-

ные только во внутренней памяти, вместо того чтобы обращать-

ся к внешней. 

Комментарии: 

По шагу 1 методики. Преобразование набора данных тран-

закции в разреженную бинарную матрицу BM, состоящую из n 

строк и m столбцов, где n – общее количество транзакций 

в наборе данных, m – сумма значений всех атрибутов, присут-

ствующих в наборе данных транзакции. Каждая транзакция пре-

образуется в строку матрицы, каждое значение атрибутов 

в наборе данных транзакции становится столбцом матрицы. 

Значения матрицы BM определяются по следующему принципу: 

если транзакция в строке i содержит соответствующее значение 

атрибута в столбце j, BMi,j = 1, в противном случае BMi,j = 0. 
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Пример 2.  Из набора данных транзакции, представленного 

в примере 1, преобразуем данные в бинарную матрицу 

BM(10х8). Поскольку данные транзакции в строке 1 содержат 

только значения i1 = 2; i2 = 1,0; i3 = A, BM1,2 = 1, BM1,5 = 1, 

BM1,7 = 1, а остальные элементы строки 1 равны 0. Аналогично 

определены значения для остальных строк матрицы. Результаты 

представлены в таблице 9. 

Таблица 9. Результаты преобразования данных транзакции 

в бинарную матрицу 
i1=1 i1=2 i1=3 i2=1,5 i2=1,0 i2=0,5 i3=A i3=B 

0 1 0 0 1 0 1 0 

1 0 0 1 0 0 1 0 

0 0 1 0 0 1 0 1 

0 0 1 0 0 1 0 1 

0 1 0 0 1 0 1 0 

1 0 0 1 0 0 1 0 

1 0 0 1 0 0 1 0 

0 1 0 0 1 0 1 0 

0 0 1 0 0 1 0 1 

0 1 0 0 1 0 1 0 

 

По шагу 2 методики. Преобразование набора правил ассо-

циации в разреженную бинарную матрицу. Данные, преобразо-

ванные в форму бинарной матрицы набора правил, делятся на 

три части: полную матрицу бинарных правил, левую бинарную 

матрицу правил и правую бинарную матрицу правил. В каждой 

бинарной матрице преобразование выполняется в соответствии 

со следующим принципом: каждое правило ассоциации преоб-

разуется в строку матрицы, каждый атрибут, появляющийся 

в левой или правой части правила ассоциации, преобразуется 

в столбцы в матрице. Значения матрицы определяются анало-

гично. 

Пример 3.  Из набора правил ассоциации, представленного 

в примере 1, преобразуем данные в бинарную матрицу следую-

щим образом: 

Полная бинарная матрица правил ассоциации BМF имеет 

9 строк и 8 столбцов. Поскольку правило ассоциации в строке 1 
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содержит только значения атрибутов i1 = 1, i3 = A, поэтому 

BМF1,1 = 1, BМF1,7 = 1. Аналогично определяются значения для 

остальных строк матрицы. Результаты представлены в табли-

це 10. 

 

Таблица 10. Результат преобразования правила ассоциации 

в бинарную матрицу 
i1=1 i1=2 i1=3 i2=1,5 i2=1,0 i2=0,5 i3=A i3=B 

1 0 0 0 0 0 1 0 

0 0 0 1 0 0 1 0 

0 0 1 0 0 0 0 1 

0 0 0 0 0 1 0 1 

0 0 0 0 1 0 1 0 

0 1 0 0 0 0 1 0 

1 0 0 1 0 0 1 0 

0 0 1 0 0 1 0 1 

0 1 0 0 1 0 1 0 

 

Левая бинарная матрица правил ассоциации BМL имеет 

размерность (9х6). В первой строке BМL1,1 = 1, остальные эле-

менты равны 0, поскольку левая часть правила ассоциации 

в строке 1 содержит только значение атрибута i1 = 1. Аналогич-

но определяем значения для остальных строк матрицы. Резуль-

таты преобразования представлены в таблице 11. 

Таблица 11. Результат преобразования левой части правила 

ассоциации в бинарную матрицу 
i1=1 i1=2 i1=3 i2=1,5 i2=1,0 i2=0,5 

1 0 0 0 0 0 

0 0 0 1 0 0 

0 0 1 0 0 0 

0 0 0 0 0 1 

0 0 0 0 1 0 

0 1 0 0 0 0 

1 0 0 1 0 0 

0 0 1 0 0 1 

0 1 0 0 1 0 
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Правая бинарная матрица правил ассоциации BМR имеет 

размерность (9х2) Поскольку правая часть правила ассоциации 

в строке 1 содержит только значение атрибута i3 = A, 

то BМL1,1 = 1, а остальные элементы строки 1 равны 0. Анало-

гично определяем значения для остальных строк матрицы. Ре-

зультаты преобразования представлены в таблице 12. 

Таблица 12. Результат преобразования правой части правила 

ассоциации в бинарную матрицу 
i3=A i3=B 

1 0 

1 0 

0 1 

0 1 

1 0 

1 0 

1 0 

0 1 

1 0 

 

По шагу 3 методики. Определение значений параметров 

статистической импликации каждого правила ассоциации. По-

сле вычисления бинарной матрицы данных, бинарных матриц 

правил ассоциации, следующим шагом будет определение зна-

чений параметров n; nA; nB; 
BA

n
 
для каждого правила в выбран-

ном наборе правил в соответствии со следующим принципом: 

–  параметр n: n – количество строк бинарной матрицы дан-

ных BM; 

–  параметр nA: для каждой строки левой бинарной матрицы 

правил BML идентифицируются столбцы со значением 1. В со-

ответствии с этими столбцами в полной бинарной матрице 

в каждом столбце определяют общее количество строк со значе-

нием 1, которое присваивают nA; 

–  параметр nB: для каждой строки правой бинарной матрицы 

правил BMR идентифицируются столбцы со значением 1. 

В соответствии с этими столбцами в полной бинарной матрице 

в каждом столбце определяют общее количество строк со значе-

нием 1 и присваивают его nB;  
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– параметр 
BA

n : для каждой строки полной бинарной матри-

цы правил BMF идентифицируются столбцы со значением 1. 

В соответствии с этими столбцами в полной бинарной матрице 

в каждом столбце определяют общее количество строк со значе-

нием 1 и присваивают его к nAB. Тогда, ABABA
nnn  .  

Пример 4.  Из результата преобразования в бинарную мат-

рицу в примере 2 и примере 3 переходим к определению значе-

ний параметров статистической импликации для первого прави-

ла следующим образом: 

n = 10; nA = 3; nB = 7; 
BA

n = 0. 

Аналогично для остальных правил определяем значения 

параметров n; nA; nB;
BA

n , представленные в таблице 13. 

Таблица 13. Значения параметров n; nA; nB;,
BA

n  для каждого 

ассоциативного правила 

№ Ассоциативное правило 𝑛 𝑛𝐴 𝑛𝐵 
BA

n  

1 {i1 = 1} => {i3 = A} 10 3 7 0 

2 {i2 = 1,5} => {i3 = A} 10 3 7 0 

3 {i1 = 3} => {i3 = B} 10 3 3 0 

4 {i2 = 0,5} => {i3 = B} 10 3 3 0 

5 {i2 = 1} => {i3 = A} 10 4 7 0 

6 {i1 = 2} => {i3 = A} 10 4 7 0 

7 {i1 = 1; i2 = 1,5} => {i3 = A} 10 3 7 0 

8 {i1 = 3; i2 = 0,5} => {i3 = B} 10 3 3 0 

9 {i1 = 2; i2 = 1} => {i3 = A} 10 4 7 0 

 

По шагу 4 методики. Значения индекса статистической им-

пликации для каждого ассоциативного правила, вычисленные по 

формуле (5), представлены в таблице 14. 
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Таблица 14. Значения индекса статистической импликации 

для каждого ассоциативного правила 

№ Ассоциативное правило q(a,b)  

1 {i1 = 1} => {i3 = A} –0,949 

2 {i2 = 1,5} => {i3 = A} –0,949 

3 {i1 = 3} => {i3 = B} –1,449 

4 {i2 = 0,5} => {i3 = B} –1,449 

5 {i2 = 1} => {i3 = A} –0,949 

6 {i1 = 2} => {i3 = A} –1,095 

7 {i1 = 1; i2 = 1,5} => {i3 = A} –0,949 

8 {i1 = 3; i2 = 0,5} => {i3 = B} –1,449 

9 {i1 = 2; i2 = 1} => {i3 = A} –1,095 

Пример 5. Для применимости модели проводился экспери-

мент на наборе данных Lenses [14], в котором хранятся атрибу-

ты для выбора контактных линз. Он включает 24 записи для вы-

бора контактных линз, 5 атрибутов (от i1 до i4 – атрибуты усло-

вия, i5 – атрибут решения). Здесь i1 (возраст пациента) включает 

три значения: 1 (молодой), 2 (в периоде перед дальнозорко-

стью), 3 (имеющий дальнозоркость); i2 (рецепт очков) включает 

два значения: 1 (близорукость), 2 (дальнозоркость); i3 (астигма-

тизм) включает два значения: 1 (нет), 2 (да); i4 (скорость слез-

опродукции) включает два значения: 1 (снижено), 

2 (нормально). Далее, i5 – это атрибут решения, используемый 

для классификации трех значений: 1 (пациент должен носить 

жесткие контактные линзы), 2 (пациенту следует подобрать 

мягкие контактные линзы), 3 (пациенту не следует надевать 

контактные линзы). Подробное содержание набора данных 

представлено в таблице 15. 

Производится создание ассоциативных правил для этого 

набора данных с использованием алгоритма генерации ассоциа-

тивных правил (алгоритм Apriori) на основе атрибутов решения 

(Поддержка = 0,15 и Достоверность = 0,8, исходя из рекомен-

даций [12]). Результаты, полученные с помощью набора из 10 

правил рекомендательной системы, представлены в таблице 16. 
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Таблица 15. Подробное содержание набора данных Lenses 
№ i1 i2 i3 i4 i5 

1 1 1 1 1 3 

2 1 1 1 2 2 

3 1 1 2 1 3 

4 1 1 2 2 1 

5 1 2 1 1 3 

6 1 2 1 2 2 

7 1 2 2 1 3 

8 1 2 2 2 1 

9 2 1 1 1 3 

10 2 1 2 1 3 

11 2 1 2 1 3 

12 2 1 2 2 1 

13 2 2 1 1 3 

14 2 2 1 2 2 

15 2 2 2 1 3 

16 2 2 2 2 3 

17 3 1 1 1 3 

18 3 1 1 2 3 

19 3 1 2 1 3 

20 3 1 2 2 1 

21 3 2 1 1 3 

22 3 2 1 2 2 

23 3 2 2 1 3 

24 3 2 2 2 3 

Таблица 16. Набор ассоциативных правил, сгенерированный для 

набора данных Lenses 

№ Ассоциативные правила 

1 {i4 = 1} => {i5 = 3} 

2 {i3 = 1; i4 = 2} => {i5 = 2} 

3 {i1 = 1; i4 = 1} => {i5 = 3} 

4 {i1 = 2; i4 = 1} => {i5 = 3} 

5 {i3 = 3; i4 = 1} => {i5 = 3} 

6 {i2 = 1; i4 = 1} => {i5 = 3} 

7 {i3 = 1; i4 = 1} => {i5 = 3} 

8 {i3 = 2; i4 = 1} => {i5 = 3} 

9 {i2 = 2; i4 = 1} => {i5 = 3} 

10 {i2 = 1; i3 = 2} => {i5 = 3} 
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Результат расчета значения меры ИСИ представлены в таб-

лице 17. 

Таблица 17. Значения меры ИСИ  
№ ИСИ 

1 –2,121 

2 –1,721 

3 –1,225 

4 –1,225 

5 –1,225 

6 –1,500 

7 –1,500 

8 –1,500 

9 –1,500 

10 –0,833 

 

На основе значения меры ИСИ модель дает рекомендатель-

ный результат. Например, при вводе значений условного при-

знака {i1 = 1; i2 = 2; i3 = 2; i4 = 1} модель выдаст рекомендации, 

представленные в таблице 18. 

Таблица 18. Результаты рекомендации при вводе значений 

условного признака {i1 = 1, i2 = 2, i3 = 2, i4 = 1} 
Ассоциативные правила ИСИ 

{i4 = 1} => {i5 = 3} –2,121 

{i3 = 3; i4 = 1} => {i5 = 3} –1,500 

{i1 = 2; i4 = 1} => {i5 = 3} –1,500 

{i2 = 1; i3 = 2} => {i5 = 3} –0,833 

 

Выбираем ассоциативное правило с наибольшим значением 

ИСИ (–0,833), для которого i5 = 3, следовательно, пациенту не 

следует использовать контактные линзы. 

Оценка точности предложенной рекомендательной модели 

проведена на основе сравнения результатов рекомендаций мо-

дели с выбором пользователя [11]. Точность представляет собой 

оценку релевантности рекомендаций пользователю и вычисля-

ется как отношение количества рекомендованных продуктов, 
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выбранных пользователем, к общему количеству рекомендован-

ных продуктов. 

Для оценки точности предлагаемой рекомендательной мо-

дели проводился эксперимент на наборе открытых данных 

MSWeb [7] о пользователях Microsoft, посетивших веб-сайты 

в течение одной недели, представленном в цифровом виде на 

сайте www.microsoft.com. Набор содержит данные о 38000 ано-

нимных пользователей, получающих доступ к 294 исходным 

веб-адресам, и представлен в виде двоичной матрицы из 32711 

строк, 294 столбцов и 98653 значений рейтинга. 

Для оценки эффективности предложенной модели 

(РС_ИСИ) в работе сравнивается точность предлагаемой модели 

с точностями рекомендательных моделей совместной фильтра-

ции, таких как рекомендательная модель совместной фильтра-

ции на основе пользователей (РС_Пол) [11], рекомендательная 

модель совместной фильтрации на основе продукта (РС_Прод) 

[11] и рекомендательная модель совместной фильтрации на ос-

нове ассоциативных правил (РС_АП) [11]. Результаты оценки 

точности рекомендательных моделей для заданного набора дан-

ных представлены в таблице 19. 

Таблица.19. Точности рекомендательных моделей 

Рекомендательная модель РС_Пол РС_Прод РС_АП РС_ИСИ 

Точность 0,425 0,401 0,501 0,699 

 

Построена сравнительная диаграмма на основе результатов 

оценки, представленная на рис. 3. 

По результатам оценки предлагаемая авторами рекоменда-

тельная модель имеет более высокую точность, чем остальные 

модели. 

В работе разработана рекомендательная модель, основанная 

на асимметричном подходе с использованием ассоциативных 

правил, меры ИСИ. Преодолены недостатки традиционных ре-

комендательных моделей, учитывающих взаимное влияние па-

ры пользователей как симметричное. Данная модель, в частно-

сти, использует асимметричную взаимосвязь между атрибутами 

условия и атрибутами решения в одном и том же пользователь-

ском объекте. По значению меры ИСИ в выбранном наборе ас-
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социативных правил модель дает рекомендательные результаты, 

чтобы помочь пользователям выбрать значения для атрибутов 

решения. 

 

Рис.3 Сравнение точности рекомендательных моделей 
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Abstract: Recommender systems are used to predict user preferences for a particu-

lar product or service, and to recommend suitable products or services to the user. 

Many of the methods used in data mining, related to classification or the construc-

tion of association rules, are used in recommender systems. This article proposes a 

new recommender model that combines association rules and statistical implication 

index measures. In the proposed model, support and confidence measures are used 

to create association rules, and the statistical implication index measure is used to 

filter the set of rules and rank recommendations. The proposed model and algo-

rithms are used to build a recommendation result based on a known data set. 

Keywords: recommender system, recommender model, statistical implica-

tion analysis, statistical implication index, algorithm Apriori, association 
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