Введение. Для получения электроизоляционных покрытий из оксидной керамики широко используются различные методы газотермического напыления, такие как газопламенное, плазменное, HVOF, детонационное и др. Важными, но пока до конца не изученными являются вопросы о природе электропроводности газотермических, в том числе. детонационных, покрытий, а также о влиянии состава используемой детонирующей смеси на их электроизоляционные свойства. Экспериментально обнаружено, что электропроводность алюмооксидных покрытий зависит не только от технологического режима их нанесения и структуры, но и от влажности и температуры окружающей атмосферы. Однако физической модели, количественно описывающей механизм электропроводности с учетом этих факторов, пока не предложено, поэтому задача теоретического объяснения имеющихся экспериментальных данных является актуальной. Цель работы заключалась в экспериментальном изучении электроизоляционных свойств алюмооксидных покрытий, полученных детонационным напылением, в определении влияния состава детонирующей смеси на их электропроводность, а также в построении физической модели, позволяющей количественно оценивать удельное объемное сопротивление покрытий. В работе исследованы детонационные покрытия, полученные на детонационной установке CCDS2000 из порошка корунда марки М40 Super с использованием ацетиленокислородных смесей с различным содержанием компонентов. Методы исследований включали измерения пористости, удельного электрического сопротивления и диэлектрической прочности полученных покрытий. Полученная информация использовалась для построения модели проводимости детонационных покрытий с учетом дефектности структуры. Результаты и их обсуждение. Различия в свойствах покрытий, полученных с применением ацетиленокислородных детонирующих смесей, в широком диапазоне молярных соотношений кислорода к топливу (от 1,0 до 5,0) не обнаружено. Высказана гипотеза о том, что проводимость покрытий обусловлена наличием дефектов – микроканалов, заполненных адсорбированной водой. Удельное сопротивление покрытий составляет (0,3…1,3)·1010 Ом·см, условная диэлектрическая прочность 5…6 кВ для толщины 240…300 мкм. Измеряемая в данной работе диэлектрическая прочность называется условной, поскольку до пробоя в обычном понимании, когда значения пробойного тока превышают сотни миллиампер и даже десятки ампер, тестируемые образцы не доводились. Пробой регистрировался, если ток через щуп превышал установленное предельное значение I = 1 мА, т. е. ток, уже ощущаемый человеком. На основе экспериментальных данных и предложенной гипотезы построена модель, согласно которой в объеме покрытия существуют сквозные дефекты в виде микроканалов, площадь которых составляет 0,5…2,0 % площади покрытия, а поперечный размер – от 24 до 105 нм. Микроканалы заполнены адсорбированной из атмосферы водой и по ним протекает основной ток при приложении напряжения. Удельное сопротивление воды при условном пробое составляет величину порядка 105 Ом·см. Научная значимость результатов заключается в объяснении причины более низкого удельного сопротивления газотермических покрытий по сравнению с беспористой спеченной алюмооксидной керамикой (более 1014 Ом·см). Практическая значимость состоит в возможности использования в детонационном напылении ацетиленокислородных смесей с различным сочетанием компонентов без ущерба качества электроизоляционных покрытий.