Development and research of the model of a wheel-legged robot

封面


如何引用文章

全文:

详细

BACKGROUND: The development of robots capable of moving in both walking and wheeled modes and distinguishing with a simple design from the already developed robots is a relevant task for some recent years. In order for such a robot to have scientific and commercial success, it is necessary for it to be as structurally complex, smooth, reliable and inexpensive as its wheeled equivalent and, in addition, to be able to move stably and quickly over terrain that is impassable for wheeled robots. The robot dynamics is modeled with the Universal Mechanism and the MATLAB/Simulink software packages. The results of virtual tests of the robot in main motion modes (straight-line motion, turning, step climbing) are given in the paper.

AIM: Increasing the mobility of a wheel-legged robot, equipped with the pseudo-walking propulsion system, using reasonable control laws.

METHODS: In order to evaluate ride performance of the studied robot, methods of numerical simulation of its motion based on the multibody dynamics software packages are used.

RESULTS: The maximal velocity of stable straight-line motion, the turning velocity and the height of the largest climbed step were obtained for the robot with given power of engines.

CONCLUSION: The model of the new mobile robot equipped with the simple-designed propulsion system has been developed. This model demonstrated high cross-country abilities and other mobility indicators according to the results of virtual tests.

作者简介

Aleksey Dyakov

Bauman Moscow State Technical University

Email: diakov57@list.ru
ORCID iD: 0009-0005-7787-2354
SPIN 代码: 9437-8400

Dr. Sci. (Tech.), Professor of the Wheeled Vehicles Department

俄罗斯联邦, Moscow

Kirill Evseev

Bauman Moscow State Technical University

Email: kb_evseev@bmstu.ru
ORCID iD: 0000-0001-7193-487X
SPIN 代码: 7753-2047

Dr. Sci. (Tech.), Associate Professor of the Wheeled Vehicles Department

俄罗斯联邦, Moscow

Dmitry Fedorov

Bauman Moscow State Technical University

编辑信件的主要联系方式.
Email: fds16m576@student.bmstu.ru
ORCID iD: 0009-0006-6141-7864

Student of the Multipurpose Tracked Vehicles and Mobile Robots Department

俄罗斯联邦, Moscow

参考

  1. Ignatiev MB, Vladimirov SV, Sapozhnikov VI, et al. Walking robots — problems and prospects. Innovatika i ekspertiza: Nauchnye trudy. 2016;2(17):128–137. (In Russ).
  2. Kotiev GO, Dyakov AS. Methods for developing chassis systems of highly mobile crewless ground vehicles. Izvestiya Yuzhnogo federalnogo universiteta. Tekhnicheskie nauki. 2016;1(174):186–197. (In Russ).
  3. Dyakov AS. Scientific methods for developing chassis systems for highly mobile unmanned ground vehicles. Trudy NGTU im RE Alekseeva. 2019;1(124):146–159. (In Russ).
  4. Velimirovic A, Velimiroviс M, Hugel V, et al. A new architecture of robot with “wheels-with-legs” (WWL). Advanced Motion Control. 1998;434–439.
  5. Chen W-H, Lin H-S, Lin Y-M, et al. Turboquad: A novel leg-wheel transformable robot with smooth and fast behavioral transitions. IEEE Transactions on Robotics. 2017;33(5):1025–1040. doi: 10.1109/TRO.2017.2696022
  6. Saranli U, Buehler M, Koditschek DE. RHex: a simple and highly mobile hexapod robot. International Journal of Robotics Research. 2001;20(7):616–631. doi: 10.1177/02783640122067570
  7. Silva M, Tenreiro Machado JT. A Historical Perspective of Legged Robots. Journal of Vibration and Control. 2007;13(9-10):1447–1486. doi: 10.1177/1077546307078276
  8. Universal mechanism 9. User manual [internet] cited: 25.08.2023. Available from: http://www.umlab.ru/pages/index.php?id=3
  9. Lapshin VV. On the stability of motion of walking machines. Nauka i obrazovanie: nauchnoe izdanie MGTU im NE Baumana. 2014;06:319–335. (In Russ).

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. The exterior view of robots: a — the RHex robot; b — the model of a prototype of the studied robot.

下载 (305KB)
3. Fig. 2. Structural diagram of the robot’s drive.

下载 (182KB)
4. Fig. 3. Variables defining conditions of robot’s state transition.

下载 (136KB)
5. Fig. 4. Structural diagram of voltage control of two PMSMs.

下载 (225KB)
6. Fig. 5. Structural diagram of braking control of the № 3 and № 4 middle “legs”.

下载 (520KB)
7. Fig. 6. The robot’s motion path: а — without controllers; b — with controllers of stability and direction.

下载 (184KB)
8. Fig. 7. The robot’s velocity control: а — the PMSM voltage, b — the robot’s velocity.

下载 (310KB)
9. Fig. 8. The robot’s motion path during a 90-degree left turn.

下载 (106KB)
10. Fig. 9. Graphs of simulation results: а — frictional torque between the № 3 and № 4 “legs” and their drive axles controlled by the direction controller; b — required and actual angle of robot’s direction; c — robot’s velocity.

下载 (301KB)
11. Fig. 10. The highest steps the robot capable of climbing.

下载 (196KB)
12. Fig. 11. Climbing the 1,2h step: а — the robot puts the № 2 “leg” on the step; b — the № 3 and № 4 “legs” are stopped not to interfere approach to the step; c — the robot puts the № 5 “leg” on the step, the climbing ends with push of rear “legs” away from the step’s edge; d — the robot finishes the climbing.

下载 (264KB)
13. Fig. 12. Climbing the 1,6h step by a robot with the changed layout: а — the start of the climbing; b — the changed body shape allows the robot to get closer to the step as much as possible; c — the robot finishes the climbing.

下载 (166KB)

版权所有 © Eco-Vector, 2023

Creative Commons License
此作品已接受知识共享署名-非商业性使用-禁止演绎 4.0国际许可协议的许可。

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).