Экспериментальная оценка биоэквивалентности оригинальных и воспроизведенных пептидных препаратов при рассеянном склерозе


Цитировать

Полный текст

Аннотация

Рассеянный склероз – широко распространенное хроническое нейродегенеративное заболевание, которое сопровождается значительной степенью инвалидизации и требует пожизненной лекарственной терапии. В связи с этим при производстве воспроизведенных лекарственных препаратов для лечения рассеянного склероза, так называемых дженериков, актуальной задачей является обеспечение их качества на уровне оригинальных форм.

В статье представлен обзор мтодов определения сопоставимости дженериков и оригинальных препаратов для основных групп лекарственных средств, используемых для лечения рассеянного склероза: препаратов глатирамера ацетата, митоксантрона, моноклональных антител, иммуномодулирующих препаратов, препаратов на основе интерферона-β. На примере экспериментального аллергического энцефаломиелита, используемого для подтверждения специфической активности препаратов глатирамера ацетата, проведен анализ факторов, мешающих корректной оценке дженериков. Предложены подходы к стандартизации методов контроля эффективности препаратов данной группы.

Об авторах

Мария Сергеевна Рябцева

ФГБУ «Научный центр экспертизы средств медицинского применения»

Автор, ответственный за переписку.
Email: infantes@yandex.ru
Россия, Москва

Наталья П. Неугодова

ФГБУ «Научный центр экспертизы средств медицинского применения»

Email: infantes@yandex.ru
Россия, Москва

Тамара А. Батуашвили

ФГБУ «Научный центр экспертизы средств медицинского применения»

Email: infantes@yandex.ru
Россия, Москва

Людмила В. Симутенко

ФГБУ «Научный центр экспертизы средств медицинского применения»

Email: infantes@yandex.ru
Россия, Москва

Список литературы

  1. Buzzard K.A., Broadley S.A., Butzkueven H. What do effective treatments for multiple sclerosis tell us about the molecular mechanisms involved in pathogenesis? Int J Mol. Sci 2012; 13(10): 12665-12709. doi: 10.3390/ijms131012665. PMID: 23202920.
  2. Кузина Е.С. Убиквитин-независимый протеолиз основного белка миелина и его роль в развитии экспериментального аутоиммунного энцефаломиелита: дис. … канд. хим. наук. М., 2015. 113 с. http://www.chem.msu.ru/rus/theses/2015/2015-02-26-kuzina/fulltext.pdf.
  3. Teitelbaum D., Aharoni R., Sela M., Arnon R. Cross-reactions and specificities of monoclonal antibodies against myelin basic protein and against the synthetic copolymer 1. Proc Natl Acad Sci USA 1991; 88(21): 9528-9532. doi: 10.1073/pnas.88.21.9528. PMID: 1719533.
  4. Бетаферон. http://www.rlsnet.ru/tn_index_id_6393.htm
  5. Buttmann M., Rieckmann P. Interferon-beta1b in multiple sclerosis. Exp Rev Neurotherapeutics 2007; 7(3): 227–239. doi: 10.1586/14737175.7.3.227. PMID: 17341170.
  6. Kovarik P., Sauer I., Schaljo B. Molecular mechanisms of the anti-inflammatory functions of interferons. Immunobiology 2007; 212 (9–10): 895–901. doi: 10.1016/j.imbio.2007.09.011. PMID: 18086388.
  7. Feng X., Yau D., Holbrook C., Reder A.T. Type I interferons inhibit interleukin-10 production in activated human monocytes and stimulate IL-10 in T cells: implications for Th1-mediated diseases. J Interferon Cytokine Res 2002; 22(3): 311–319. doi: 10.1089/107999002753675730. PMID: 12034038.
  8. Hartung H.P., Gonsette R., König N. et al. Mitoxantrone in progressive multiple sclerosis: a placebo-controlled, double-blind, randomised, multicentre trial. Lancet 2002; 360 (9350): 2018–2025. doi: 10.1016/S0140-6736(02)12023-X. PMID: 12504397.
  9. Ритуксимаб. http://www.rlsnet.ru/mnn_index_id_2695.htm.
  10. Cross A.H., Stark J.L., Lauber J. et al. Rituximab reduces B cells and T cells in cerebrospinal fluid of multiple sclerosis patients. J Neuroimmunol 2006; 180(1–2): 63–70. doi: 10.1016/j.jneuroim.2006.06.029. PMID: 16904756.
  11. Ransohoff R.M. Natalizumab for multiple sclerosis. N Engl J Med 2007; 356(25): 2622–2629. doi: 10.1056/NEJMct071462. PMID: 17582072.
  12. Tanasescu R., Ionete C., Chou I.J., Constantinescu C.S. Advances in the treatment of relapsing-remitting multiple sclerosis. Biomed J 2014; 37(2): 41–49. doi: 10.4103/2319-4170.130440. PMID: 24732658.
  13. Милихина Н.В. Изучение гуморального звена специфического имунитета при экспериментальной модели рассеянного склероза – аллергического энцефаломиелита. В сб.: Научное сообщество студентов XXI столетия. Естественные науки. Матер. XXIX междунар. студ. науч.-практ. конф. Новосибирск, 2015; 3(28): 18–24.
  14. Завалишин И.А., Елисеева Д.Д. Патогенетическая терапия рассеянного склероза Лечащий врач 2009; (9): 43–46.
  15. Гусев Е.И., Демина Т.Л., Хачанова Н.В. Сравнительный анализ бета-интерферонов, используемых для лечения рассеянного склероза. Нейроиммунология 2003; (1): 45–50.
  16. Copaxone prescribing information https://www.copaxone.com/Resources/pdfs/PrescribingInformation.pdf
  17. Adamus G., Amundson D., Vainiene M. et al. Myelin basic protein specific T-helper cells induce experimental anterior uveitis. J Neurosci Res 1996; 44(6): 513–518. doi: 10.1002/(SICI)1097-4547(19960615)44:6<513::AID-JNR1>3.0.CO;2-E. PMID: 8794942.
  18. Hernández-Pedro N.Y., Espinosa-Ramirez G., de la Cruz V.P. et al. Initial immunopathogenesis of multiple sclerosis: innate immune response. Clin Dev Immunol 2013; 2013: 413465. doi: 10.1155/2013/413465. PMID: 24174969.
  19. Tsunoda I., Fujinami R.S. Two models for multiple sclerosis: experimental allergic encephalomyelitis and Theiler’s murine encephalomyelitis virus. J Neuropathol Exp Neurol 1996; 55(6): 673–686. doi: 10.1097/00005072-199606000-00001 . PMID: 8642393.
  20. Пивнева Т.А. Механизмы демиелинизации при рассеянном склерозе. Нейрофизиология 2009; 41(5): 429–437.
  21. Baker D., Jackson S.J. Models of multiple sclerosis. ACNR 2007; 6: 10-12. http://www.acnr.co.uk/JF07/ACNR_JF07_review_model.pdf
  22. Dal Canto M.C., Melvold R.W., Kim B.S., Miller S.D. Two models of multiple sclerosis: experimental allergic encephalomyelitis (EAE) and Theiler's murine encephalomyelitis virus (TMEV) infection. A pathological and immunological comparison. Microsc Res Tech 1995; 32(3): 215–229. doi: 10.1002/jemt.1070320305. PMID: 8527856.
  23. Marques A., Müller S. Mouse models of autoimmune diseases. Current Drug Discov Technol 2009; 6(4): 262–269. doi: 10.2174/157016309789869047 PMID: 20025594.
  24. Каркищенко Н.Н., Грачева С.В. (ред.) Руководство по лабораторным животным и альтернативным моделям в биомедицинских исследованиях. М.: Профиль-2С; 2010.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Ryabtseva M.S., Neugodova N.P., Batuashvili T.A., Simutenko L.V., 2018

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).