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models of quantum harmonic and anharmonic oscillators, a new model with a variable value of the molecule force 
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Введение 

Молекулярные колебания как неотъемлемая 

часть явлений микромира исследовались 

многочисленными авторами в сотнях научных 

работ. Как известно, при молекулярных 

колебаниях меняется геометрия молекулы, т.е. 

происходит изменение положения атомов друг 

относительно друга. В общем случае n-атомная 

молекула обладает 3n-6 колебаниями. У линейных 

молекул 3n-5 колебаний, у двухатомных молекул 

всего один тип колебаний, при котором меняется 

межатомное расстояние [1]. 

Любая молекула представляет собой динами-

ческую систему, в которой происходят колебания 

ядер, движение электронов, взаимодействия 

частиц с нулевыми флуктуациями электромаг-

нитного поля, испускание и поглощение 

связанными электронами виртуальных фотонов. 

Изучение этих явлений является актуальной 

задачей для физической химии, молекулярной 
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физики и квантовой механики. 

Цели данной работы – вывод новой формулы 

энергии колебаний ангармонического осциллятора 

при малых значениях коэффициента 

ангармоничности, математический анализ этой 

модели и расчет энергии колебаний молекулы 

кислорода при помощи полученной формулы. 

Материалы и методы исследований 

В качестве методологической базы в работе 

использованы формулы для энергии колебаний 

гармонического квантового осциллятора, энергии 

колебаний ангармонического квантового 

осциллятора с потенциалом Морзе и аппарат 

математического анализа. Идеей работы является 

замена табличной силовой константы k молекулы 

на зависящую от коэффициента ангармоничности 

 и колебательного квантового числа n силовую 

константу . 

Результаты и обсуждения 

В классической механике связи между атомами 

ведут себя подобно пружинам, в гармоническом 

приближении они подчиняются закону Гука  F=kx 

, т.е. сила, которую необходимо приложить для 

деформации пружины, прямо пропорциональна 

величине этой деформации. В случае 

молекулярных колебаний коэффициент 

пропорциональности k называют силовой 

константой. В квантовой механике, как и в 

классической, потенциальная энергия 

гармонического осциллятора является 

квадратической функцией от нормальной 

координаты, а решение уравнения Шредингера 

даёт значение энергии колебаний 

 ,        (1) 

где n=0,1,2,… – значение квантового числа. 

Энергия основного состояния 

 называется нулевой энергией [2]. 

Для случая двухатомной молекулы роль массы 

m будет играть приведенная масса  , 

где  и  – массы составляющих молекулу 

атомов А и В. Если молекула состоит из двух 

одинаковых атомов, то  , поэтому 

. Тогда энергия колебаний такой молекулы 

,   

где n – колебательное квантовое число. Часто в 

научной литературе по молекулярной 

спектроскопии колебательное квантовое число 

обозначается буквой V. 

Рассмотрим случай двухатомной молекулы. В 

обычных условиях молекула находится в 

состоянии устойчивого равновесия, а ее ядра 

совершают колебательные движения относительно 

центра инерции молекулы, причем изменение 

положения ядер приводит к локальному 

изменению электронного состояния молекулы. 

Известно, что электронная энергия молекулы 

значительно превосходит энергию колебательного 

движения, а энергия колебательного движения 

значительно превосходит энергию вращательного 

движения. 

Пусть отклонения ядер от положения 

устойчивого равновесия малы, т.е. 

, тогда силовая постоянная 

 в точке  ,где R – расстояние между 

ядрами,  – равновесное положение атомов. 

Кривая потенциальной энергии является 
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квадратической функцией , а 

колебания молекулы происходят по закону 

гармонического осциллятора, т.е. смещение 

,    

где  – амплитуда, а  – собственная 

частота колебаний [3]. 

Силовая постоянная колебаний молекулы k 

имеет порядок 1Н/см и определяется 

взаимодействием зарядов ядер и электронов, она 

характеризует упругие свойства химической связи 

при малых смещениях. С ростом кратности связи 

значение k также растет. Например, для молекулы 

кислорода силовая константа равна 11,76 Н/см. 

Более прочная связь соответствует большей 

силовой постоянной, но общая теоретическая 

зависимость между энергией диссоциации и 

силовой постоянной не выявлена. Для небольших 

молекул делаются попытки расчета силовых 

постоянных методами квантовой механики: полная 

электронная энергия молекулы записывается как 

функция смещения ядер относительно положения 

равновесия и рассчитываются вторые производные 

потенциальной энергии по каждой координате. 

Наинизшие по энергии нулевые колебания 

обязаны своим существованием принципу 

неопределенности, согласно которому частица не 

может находиться в одной определенной точке и 

одновременно иметь нулевую кинетическую 

энергию. Специфическое правило отбора для 

переходов между колебательными стационарными 

уровнями гармонического осциллятора 

записывается как , т.е. спектр 

гармонического осциллятора состоит из одной 

линии с частотой , называемой собственной 

(фундаментальной) частотой осциллятора, так как 

возможны лишь переходы между соседними 

уровнями. 

Для ангармонического осциллятора 

зависимость потенциальной энергии от 

координаты не является квадратической. 

Специфическое правило отбора для спектров 

ангармонического осциллятора 

, а его спектр представляет 

собой систему сближающихся полос (первая 

полоса называется фундаментальной, а остальные 

полосы лежат в области более высоких частот и 

называются обертонами). Модель ангармоничес-

кого осциллятора, колебания которого не 

подчиняются закону синуса, возникает в связи с 

тем, что вдали от положения равновесия в 

решении уравнения Шредингера присутствует 

ангармоническая поправка [4]. Энергия 

диссоциации (т.е. энергия, необходимая для 

разрушения химической связи в молекуле) может 

быть определена из колебательного спектра для 

случая ангармонический колебаний. Также нужно 

помнить, что необходимым условием для 

поглощения инфракрасного излучения молекулой 

является изменение ее дипольного момента при 

колебаниях. Поэтому двухатомные молекулы, 

состоящие из одинаковых атомов, не будут 

поглощать ИК-радиацию [5]. 

Флуктуации энергии единицы объема вакуума, 

связанные с рождением и уничтожением 

виртуальных частиц, и большие амплитуды 

колебаний приводят к достаточно сложной 

колебательной динамике, поэтому в целом модель 

гармонического осциллятора противоречит 

экспериментальным данным. 

Рассмотрим более подробно гармонический и 

ангармонический осцилляторы. Уравнение 

Шредингера для одномерного гармонического 
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осциллятора имеет вид 

,   

а волновые функции получаются умножением 

полиномов Чебышева-Эрмита на , где 

. Волновые функции как обычно 

нормируют к единице: 

.   

Уровни энергии гармонического осциллятора 

эквидистантны, т.е. равноудалены друг от друга. В 

случае, когда существенное значение имеют лишь 

низшие колебательные уровни (согласно 

распределению Больцмана [6] большая часть 

лёгких двухатомных молекул при комнатной 

температуре находится на нулевом колебательном 

уровне), модель гармонического осциллятора 

может быть успешно использована. Для более 

точного описания потенциальной кривой 

двухатомной молекулы используется функция 

Морзе  , где  – энергия 

диссоциации, отсчитанная от минимума 

потенциальной кривой,  -некоторый постоянный 

для каждой молекулы параметр. При  

получим значение , при больших смещениях 

x получим значение   , т. е. при больших 

смещениях может произойти диссоциация 

молекулы. При использовании потенциала Морзе 

решение уравнения Шредингера существует при 

собственных значениях энергии колебаний 

,      (2) 

где V – квантовое колебательное число,  – 

колебательная постоянная молекулы, называемая 

также собственной частотой колебаний и имеющая 

размерность ,  – коэффициент 

ангармоничности (имеет значение от нескольких 

тысячных до нескольких сотых и является 

безразмерной величиной). При увеличении 

квантового числа V колебательные уровни 

сближаются, энергия колебаний может достичь 

максимального значения и тогда произойдет 

диссоциация молекулы. Наибольшее квантовое 

число можно найти из условия максимума энергии 

 , оно составит . Также при 

больших значениях квантового числа V для 

уточнения используют трехчленное выражение 

для энергии колебаний, содержащее два 

коэффициента ангармоничности [7]: 

.    

 

Запишем формулу (1) в виде 

 ,                        (3) 

где  – зависящая от квантового колебательного 

числа n и коэффициента ангармоничности  

силовая постоянная молекулы. 

Формулу (2) запишем в форме 

 .                                                                (4) 
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Сравнивая выражения (3) и (4), получим равенство 

.     

 

Умножим обе части этого уравнения на  : 

.   

Возводя обе части этого равенства в квадрат, 

получим 

.  

Ввиду малости коэффициента ангармоничности 

 слагаемым   можно 

пренебречь. Тогда 

                                                  (5) 

 

– итоговое выражение для силовой постоянной 

 молекулы , зависящей от колебательного числа n 

и табличного значения силовой постоянной 

молекулы k. Подставив (5) в (3), получим 

выражение для энергии колебаний: 

                                                         (6) 

 

Проверим, соответствует ли полученная 

формула физической сущности ангармоничных 

колебаний. 

Наибольшее возможное значение квантового 

числа n найдем из условия максимума энергии 

 : 

.     

 

(при дифференцировании выражения (6) 

использовали правила дифференцирования 

произведения функций и сложносоставной 

функции). 

Домножим обе части этого уравнения на 

 : 

 ,   

откуда наибольшее возможное значение 

квантового колебательного числа 

.                               (7) 

(оно может быть дробным числом). 

Подставив (7) в (6), найдем энергию 

диссоциации молекулы 

 .                              (8) 

Значение для (n+1)-го уровня энергии согласно 

формуле (6) 

 .      

 

Тогда разность между энергиями соседних уровней 
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 .                  (9) 

 

Применим эквивалентное преобразование для 

малых значений t    [8] : 

;  

.  

Тогда выражение (9) примет вид 

 ,          (10) 

откуда видно, что с ростом n расстояние между 

соседними энергетическими уровнями 

уменьшается. Как говорят, колебательные уровни 

сходятся. 

Формула (10) полностью совпадает с формулой 

разности энергий двух последовательных 

переходов для ангармонического осциллятора. 

Возьмем первые три члена разложения 

функции  в ряд Маклорена [9]: 

 .    

Тогда формула (6) запишется в форме 

.                                            (11) 

 

Любая существующая в науке модель 

ангармонических колебаний является неточной, в 

том числе и новая модель, представленная в 

данной работе. Сам же потенциал Морзе с 

хорошей точностью описывает колебательные 

уровни средней и нижней частей электронного 

терма для ряда молекул [10]. 

Для молекулярных колебаний можно 

применить теорему о вириале, применяемую в 

различных разделах физики для стабильной 

системы, причем теорема вириала также 

справедлива для квантовой механики [11]. 

Известно, что для гармонического осциллятора 

вириальная теорема записывается в форме 

 ,                        (12) 

где  и  – средние полные кинетическая и 

потенциальная энергии системы соответственно. 

Заметим, что если значение имеют только 

низшие колебательные уровни, кривая потенциала 

Морзе близка к параболическому потенциалу 

гармонического осциллятора, поэтому в этом 

случае вириальную теорему можно записать в 

форме 

 .                                                (13) 

 

В качестве примера рассмотрим колебательный 

спектр молекулы кислорода в рамках 

представленной в работе модели. 

Известно, что для молекулы кислора  

коэффициент ангармоничности  равен 0,00076 

(что значительно меньше коэффициента 

ангармоничности для других двухатомных 

молекул), колебательная постоянная молекулы 

кислорода  равна 1580,19  = 158019   . 

Также для расчетов используем значение 

скорости света c=299792458 м/с и значение 

постоянной Планка . 

Тогда модифицируем формулу (6) как 
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 .        (14) 

 

Заметим, что формулу (14) можно записать в виде 

 ,                                                         (15) 

 

где  – энергия Хартри 

(равна модулю электрической потенциальной 

энергии атома водорода в основном состоянии); 

 – постоянная тонкой 

структуры (значение, рекомендованное CODATA) 

является фундаментальной безразмерной 

физической константой, характеризующей силу 

электромагнитного взаимодействия. 

Выводы 

Таким образом, в данной работе рассмотрены 

колебания двухатомной молекулы как 

ангармонического квантового осциллятора с 

малыми значениями коэффициента 

ангармоничности и получена новая формула для 

энергии его колебаний. В этой новой модели 

реализована идея с переменным значением 

силовой константы молекулы , зависящим от 

колебательного квантового числа n и 

коэффициента ангармоничности . 

Математический анализ этой модели подтвердил 

соответствие новой формулы необходимым 

физическим критериям. 

Также в работе рассчитана энергия колебаний 

молекулы кислорода при помощи полученной 

формулы. 
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