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Introduction 

Cement-based materials are among the most pre-

ferred building materials worldwide due to their ac-

cessibility and formability. Despite the many ad-

vantages, cement-based materials are prone to crack-

ing due to several factors such as shrinkage, alkali–

silica reaction and corrosion of reinforcement steel in 

the case of reinforced concrete. Cracks in concrete are 

often unavoidable and can lead to severe structural 

wear. Concrete structures are sensitive to a wide range 

of physical, chemical and biological factors, such as 

temperature fluctuations, aggressive gases, harsh envi-

ronments and exposure to chemicals. These men-

tioned factors have a detrimental effect on the durabil-

ity and structural integrity of concrete, reducing the 

effective service life of concrete structures, which en-

tail additional repair costs. 

Extending the strength and service life of concrete 

structures minimizes the need for expensive repairs 

during the service life. The most effective way to in-

crease the service life would be self-healing of con-

crete. Common crack repair methods require external 

intervention, which makes it difficult to eliminate 

cracks in structures with limited accessibility. Thus, 

there is a need to develop new repair technologies that 

can "self-heal" without external interference. 

The activity of microbes makes a significant con-

tribution to the cementing properties. The natural 

mechanism behind self-healing is biomineralization. 

Biomineralization shows promising results in the 

field of building materials in the form of a technology 

called microbiologically induced precipitation of cal-

cium carbonate (MIOC) or biocementation (BC), 

which is a biomineralization process involving the 

formation of  (3 ions) using the basic metabolism 

of certain microorganisms. These carbonate ions are 

converted to calcium carbonate  in the pres-

ence of a calcium source. The technology has been 

successfully applied in construction and geotechnical 

fields. Biocementation has found application, includ-

ing in construction, in the field of crack removal and 

hardening of cement materials. Biomineralization po-

sitions itself as one of the most sustainable construc-

tion technologies, since the microbes included in the 

matrix of the building mix provide long-term protec-

tion of building materials due to their self-healing 

mechanism. 

In the period 2019-2024, 99 studies were published 

on the biocementation of cement-based materials; 18 

of which are of a review nature, and 81 research-type 

articles. The factors influencing the effectiveness of 

bio-cementation have also been studied in many stud-

ies. 

Despite numerous successful research works in the 

laboratory, research conducted in construction condi-

tions remains limited due to the complexity of the hy-

dration process and the high alkalinity of cement-

based materials. 

The purpose of the study is to study and develop 

methods for increasing the service life of concrete 

structures using biomineralization technology, includ-

ing the use of microbiologically induced calcium car-

bonate precipitation (MIOC) or biocementation (BC). 

To achieve the purpose of the study, it is necessary to 

solve a number of the following tasks: 

1. To present a detailed method of literature search 

and systematization of identified sources for a certain 

period. 

2. Consider the process of biomineralization. 
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3. Consider the cementation process, including the 

ways of precipitation of calcium carbonate, hydrolysis 

of urea and the mechanism of self-healing of bi-

obetone. 

4. To consider the existing problems of biomineral-

ization related to the effectiveness of species of mi-

croorganisms, with sources of calcium, with the use of 

urea and with the immobilization of bio-cementing 

agents. 

Methods of literature search 

This section is aimed at a detailed description of 

the methodology of the review. At the beginning, the 

goals and objectives of the study are formulated. The 

search for scientific literature is carried out using the 

Scopus database to collect a wide range of relevant 

works. A combination of relevant keywords "urea 

AND concrete" and phrases related to the research 

topic is used. The selected keywords have been se-

lected to ensure the fullest possible coverage of the 

relevant literature. The time interval corresponded to 

the period of the last 5 years (from 2019 to 2024, Fig-

ure 1a). The keywords are "urease", "calcium car-

bonate", "concrete", "biomineralization", "self-healing 

materials", "self-healing concrete", "concrete con-

struction", "urea" and "concretes". Taking into ac-

count these keywords and filters, 81 research-type 

articles and 18 review articles were found over the 

selected time interval (Fig. 1b). 

 

 
Fig. 1a. Analysis of sources by year. 
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Fig. 1b. Analysis of sources by document type. 

 

Then the results of the search and filtering of liter-

ary sources are analyzed using the VOSviewer soft-

ware, which allows you to create a visual representa-

tion of the coincidence of keywords, authors and pub-

lications in the dataset (Fig. 2a and 2b). 

 
Fig. 2a. Analysis of search results data using VOSviewer software. 
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Data analysis in the VOSviever software provided 

information about the most important research topics, 

patterns and relationships between different concepts. 

The results of the analysis were systematized to 

create a three-dimensional picture of the literary land-

scape associated with the research topic. The com-

bined results allowed us to identify key research 

trends, influential authors, and significant groups of 

related publications. The interpreted results of the data 

analysis were discussed in the context of the research 

objectives and the existing literature. The results were 

critically analyzed to draw meaningful conclusions 

and identify potential areas for future research. 

 

 
Fig. 2b. Analysis of search results data using VOSviewer software. 

 

This methodological approach allows for a thor-

ough and systematic study of the existing literature 

and provides a solid foundation for subsequent stages 

of analysis and discussion. 

Literature review 

Biomineralization 

Biomineralization can be defined as the process of 

mineral formation by biotic or living beings. The bi-

omineralization process can occur by any of two 

mechanisms: 

a) biologically controlled mineralization (BCM); 

b) biologically induced mineralization (BIM) [1]. 

In a biologically controlled mechanism, organisms 

activate the process and can control the nucleation and 

growth of mineral phases. The formation of teeth and 

bones in higher mammals falls into this category. 

However, with biologically induced mineralization, 
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organisms do not exercise a high level of control, and 

the mineral produced is significantly dependent on the 

environment. Mineralization that occurs during bio-

fermentation falls into this category. 

Biocementation 

Biocementation involves a biomineralization pro-

cess in which calcium carbonate is induced by the 

metabolic activity of certain microorganisms. The 

deposition of  is a simple process that is heavi-

ly influenced by four determining factors: 

- concentration of calcium ions; 

- the number of carbonate ions; 

- pH; 

- the presence of places of origin. 

The role of the microorganisms involved is to 

change any of the mentioned parameters either indi-

vidually or in combination [2]. 

Biofermentation pathways 

There are various ways in which calcium carbonate 

precipitation can occur, namely. ammonification (de-

amination), denitrification, sulfate reduction, photo-

synthesis, methane oxidation and urea hydrolysis (Ta-

ble 1) [3]. 

Table 1 

Different pathways of biocementation. 

Microorganisms 
Description of the bio ce-

mentation process 
Reactions 

Ammonification (ni-

trogen mineraliza-

tion)/deamination of 

amino acids by mi-

crobes (usually oxida-

tive). It is widespread 

in bacteria, including 

in relation to concrete 

in Bacillus cereus [4]. 

Microorganisms secrete 

ammonia during oxidative 

deamination of amino ac-

ids. The resulting keto ac-

ids are broken down under 

aerobic conditions toо  

and . 

Carbon dioxide reacts with 

calcium hydroxide con-

tained in cement. Alkaliza-

tion with ammonia also 

promotes crystallization 

and formation of calcium 

carbonate. 
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Continuation of Table 1 

Denitrification: reduc-

tion of nitrates to mo-

lecular nitrogen during 

anaerobic respiration. 

Pseudomonas denitrif-

icans, Alcaligenes, etc. 

During denitrification, the or-

ganic matter is oxidized to 

 and  using  as 

the final electron acceptor. At 

the same time, due to the re-

moval of nitrate ions from the 

system, the medium is alka-

linized, which creates condi-

tions for biomineralization. 

 

Sulfate reduction: re-

duction of sulfates to 

sulfides by sulfate-

reducing bacteria dur-

ing anaerobic respira-

tion. Desulfovibrio, 

Desulfobulbus, Desul-

fobacter, etc. [5]. 

Sulfate-reducing bacteria, in a 

process called sulfate dissimi-

lation reduction, convert sul-

fate to hydrogen sulfide, while 

calcium sulfate is replaced by 

carbonate. 

 
 

Photosynthesis of cya-

nobacteria and micro-

algae. The surface of 

concrete structures is 

often populated by 

phototrophic microor-

ganisms, which can 

participate in the bio-

cementation of surface 

cracks due to carbonic 

anhydrase activity. 

Photosynthetic microorgan-

isms can cause precipitation of 

calcium carbonate by metabo-

lism  and  in the 

presence of sunlight.  it 

moves through the membrane 

and dissociates into  и 

 in the cytosol of the cell. 

This process is facilitated by 

carbonic anhydrase, which 

leads to an increase in pH due 

to the formation of . The 

presence of calcium ions in the 

environment contributes to the 

precipitation of calcium car-

bonate. 
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Continuation of Table 1 

Аэробное окисление 

метана. Окисление 

ме-тана аэробными 

мета-нотрофными 

бактерия-ми, в том 

числе, Methylocystis 

parvus, Methylobacter 

sp. 

The process begins with the 

conversion of methane into 

methanol due to the activity of 

methanmonooxygenase. In the 

periplasm of the cell, metha-

nol, which is a carbon source, 

is converted into a format us-

ing several enzymatic process-

es. The activity of formate de-

hydrogenase allows methan-

monooxygenase to oxidize 

formic acid to . The result-

ing  then it turns into 

, leading to precipitation 

of calcium carbonate around 

cells in the presence of calci-

um ions. 

 

 

 

 

 

 

Anaerobic oxidation of 

methane. Anaerobic 

methane-oxidizing 

bacteria 

In the presence of calcium 

ions, aerobic methanotrophic 

bacteria produce bicarbonates 

by anaerobic oxidation of me-

thane, where sulfate acts as the 

main electron acceptor. 

 

 

 

Hydrolysis of urea by 

realistic bacteria 

Precipitation of calcium car-

bonate by hydrolysis of urine 

involves a process that in-

volves the cleavage of urea 

into ammonia and carbon di-

oxide in the presence of the 

enzyme urase, which then re-

act with calcium ions (coming 

from outside) to form calcium 

carbonate. 
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Ureolysis or hydrolysis of urea is the most studied 

pathway of biocementation due to the high degree of 

controllability it provides. The main advantage of the 

ureolytic method over other biocementation methods 

is the relatively high precipitation of calcium car-

bonate with a shorter reaction time. 

Many different biogenic minerals, including car-

bonates, halides, phosphates, oxalates, sulfates and 

oxides of various metals can be induced by microor-

ganisms. However, biologically induced calcium car-

bonate is suitable for biocementation in cement-based 

materials for the following reasons: 

1. Calcium is one of the most abundant elements in 

the earth's crust and is available in most environments. 

This makes the production of calcium carbonate sim-

pler and more cost-effective compared to other alter-

natives such as iron or manganese. 

2. Calcium carbonate is a highly stable compound, 

having limited solubility and less exposure to atmos-

pheric influences, thus being more durable and dura-

ble compared to other biologically induced minerals. 

3. Calcium carbonate can be obtained in various 

forms, including crystals, shells and aggregates, and 

can be used in a wide range of applications, from soil 

stabilization to hardening of concrete and other build-

ing materials [6]. 

4. Calcium carbonate is biocompatible and there-

fore non-toxic. It does not harm living organisms, in-

cluding humans. Thus, it is a safer option compared to 

other biologically induced minerals, such as minerals 

containing arsenic, lead and mercury. 

 

 

 

 

Calcium carbonate can be obtained using various 

microorganisms, including bacteria, fungi and algae, 

which makes this process more flexible and adaptable 

compared to other biologically induced minerals, 

which require certain types of microorganisms [7]. 

Hydrolysis of urea 

The types of bacteria that are suitable for ureolysis, 

that is, capable of secreting the enzyme urease, are 

known as urease-positive or ureolytic bacteria [8]. 

Given that cement-based materials are usually as-

sociated with a highly alkaline environment, ureolytic 

bacterial species must be able to withstand harsh and 

alkaline conditions in a porous solution of cement-

based material for effective biocementation. It has 

been found that urease-positive bacteria are able to 

grow and perform myocardium even in harsh envi-

ronmental conditions, and some have the ability to 

survive in highly alkaline conditions inside the matri-

ces of cement materials for a long time [9]. 

An important factor to consider when choosing 

ureolytic bacterial species for myocardium is the 

pathogenicity of bacterial species. 

Biosementing bacteria should be non-pathogenic 

and should not produce any by-products showing any 

traces of pathogenicity [10]. 

For example, the highest urease secretion has been 

recorded in the bacterial species ureaplasma urealyti-

cum, however, this type of bacteria is known to cause 

urinary tract infection in humans. Thus, the use of 

ureaplasma urealyticum and other similar pathogenic 

bacteria is limited. The recommended bacterial spe-

cies for biocementation are ureolytic bacteria of the 

genera bacillus, sporosarcina, spoloactobacilus, clos-

tridium and desulfotomaculum. 

 



Chemical Bulletin  2024, Том 7, №3 / 2024, Vol. 7, Iss. 3 
ISSN 2619-0575  https://cb-journal.ru 
  

 

13 

Biocementation by hydrolysis of urea involves 

growing bacteria in a suitable nutrient medium con-

taining all the necessary substances, and then provid-

ing them with an environment rich in urea and calci-

um ions. Fully grown bacteria secrete the enzyme ure-

ase as part of their natural metabolism. The urease 

enzyme hydrolyzes urea to form , which then 

combines with calcium ions coming from the outside 

to form calcium carbonate [11]. 

Fig. 1 shows a detailed sequence of chemical reac-

tions occurring in biocementation by hydrolysis of 

urea [10]. 

 

 
Fig. 3. Urea hydrolysis pathway of biocementation. 

 

Initially, in the presence of urease, urea undergoes 

hydrolysis to form carbamate and ammonia. As a re-

sult of carbamate hydrolysis, one mole of ammonia 

and carbon dioxide is also formed. These products 

then react to form one mole of bicarbonate and two 

moles of ammonium and hydroxide ions, respectively. 

Due to the increase in pH as a result of these reac-

tions, the bicarbonate equilibrium shifts, which leads 

to the formation of carbonate ions. Bacteria usually 

have a negatively charged cell wall that allows them 

to attract  from the environment. These cations 

are deposited on the surface of the bacterial cell, 

which acts as a place of origin, and then react with 

 ions to form a  precipitate. 

Self-healing mechanism 

When exposed to moisture, lime in solution under-

goes a carbonization process, which reacts with car-

bon dioxide from the atmosphere to form calcium car-

bonate. This process can take place over a long period 

when calcium carbonate fills small cracks and voids in 

the solution, thus effectively sealing and strengthening 

the microstructure. This process is also known as au-

togenic healing, as it occurs without the need for ex-

ternal intervention [12]. 
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Ureolytic bacteria of the genus bacillus, which are 

used for biocementation, are usually spore-forming. 

Spore-forming bacteria are a type of bacteria that can 

form highly resistant spores under adverse environ-

mental conditions such as exposure to heat, radiation, 

or chemicals. These spores are highly resistant to de-

struction and can remain viable for long periods of 

time. These spores can be added to concrete along 

with a source of calcium and urea. When the concrete 

cracks, water penetrates into the cracks and binds to 

the core of the spore, the water content in the spore 

increases, which leads to the formation of a hydro-

lyzed core. The hydrated core initiates the activation 

process by triggering the hydrolysis of the peptidogly-

can bark of the spore, which is a thick layer surround-

ing the spore core [13] (Fig. 2). 

 

 
Fig. 4. Mechanism of activation of dormant bacterial spore with moisture ingression. 

 

This activation of the spores leads to their germina-

tion and growth into active bacteria. These bacteria 

can then hydrolyze urea and induce calcium car-

bonate, which can fill cracks and restore the structural 

integrity of cement-based materials. 

Effective self-healing of structures using these bac-

terial spores requires long-term sealing, which can be 

maintained throughout the life of the structure. The 

survival of bacteria is crucial to achieve this goal. 

However, adding bioagents directly to concrete can 

create problems for bacterial survival [14]. Exposure 

to a highly alkaline environment over a long period 

can significantly reduce bacterial activity [15]. The 

longer survivability of bacteria added directly to con-

crete is still controversial [16]. Bacteria can be encap-

sulated or embedded in the matrices of cement-based 

materials to protect them for a longer period and pro-

mote self-healing by precipitation of calcium car-

bonate. Encapsulation is a common method of immo-

bilizing self-healing bacteria in concrete. In this meth-

od, the bacteria are surrounded by a thick protective 

layer that prevents them from leaching out or decom-

posing. Self-healing bacterial spores are embedded in 

porous materials. The porous materials are then in-

jected into a cement-based material matrix, where 

bacteria grow and multiply, and their metabolic activi-

ty helps to seal cracks in cement-based materials. 

Many studies have been conducted to test the ability 
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of various bacterial species. Table 2 shows the bioce-

mentation studies conducted using various immobili-

zation methods for the period from 2019 to March 

2024. 

Self-healing of biobetone can be divided into sev-

eral types: 

1. In the microbiological form of self-healing, spe-

cial types of bacteria are used that can fill cracks and 

restore the surface of concrete. 

2. In the chemical form of self-healing, chemical 

reaction processes take place inside the biobetone, 

which contribute to filling the crack of concrete and 

restoring its structure. 

3. In autogenous self-healing in conditions of mod-

erate humidity, cement in biobetone reacts and fills 

microscopic cracks. 

4. In physical self-healing, some components of 

biobetone undergo physical change under the influ-

ence of external loads, which contributes to the resto-

ration of cracks. 

These methods allow biobetone to maintain its 

strength and structure even in the event of damage, 

which makes it a stable and durable material for con-

struction. Table 2 provides a list of biocementation 

studies using various bacteria and self-healing meth-

ods. 

Table 2 

Biocementation studies to test the self-healing potential of different bacteria. 

The healing method Link 

The use of microcapsules of the Preyssler brand with calcium nitrate [17] 

Experiments on different concentrations of bacterial solution and urea in a concrete mixture 

to identify the best results of microbiological precipitation of calcium 
[18] 

The use of photosynthetic cyanobacteria Synechocystis pevalekii. [19] 

Comparison of two biomineralization methods: 1 method (use of bacterial spores and nutrient 

sources in solution and their further use for self-healing of cracks), 2 method (absence of bi-

omineral additives in solution, a mixed solution of urea and calcium acetate was used for 

self-healing) 

[20] 

The use of calcite-inducing bacteria identified in the alkaline soda lakes of Chita and Abijat-

ta, Ethiopia. 
[21] 

The application of a deposition process controlled by regulating the rate of release of urease 

activity and the study of its effect on the mechanical properties of precipitated . 
[22] 

The use of the bacteria Sporosarcina pasteurii and Staphylococcus sp. H6 [23] 

The use of Bacillus subtilis bacteria 

[24] 

[25] 

[26] 

[27] 

[28] 
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Continuation of Table 2 
The use of cold-resistant bacteria Brevibacterium frigoritolerans A 779 and A 793 and S. pas-

teurii fwzy14 
[29] 

The use of Sporosarcina pasteurii bacteria 

[30] 

[31] 

[32] 

[33] 

[34] 

[35] 

[36] 

[37] 

[38] 

The use of sodium alginate [39] 

The use of Bacillus pumilus bacteria [40] 

The use of bacteria Sporosarcina pasteurii, calcium-urea nitrate and calcium-urea chloride [41] 

The use of bacteria that produce urease, which promotes the formation of hydrated magnesi-

um hydroxycarbonates and improves the strength of concrete of reactive cement  
[42] 

The use of bacteria Arthrobacter sulphureus, yeast extract, urea, , . [43] 

The use of bacteria Priestia megaterium, Neobacillus drentensis, Sporosarcina pasteurii, Ba-

cillus subtilis and Priestia aryabhattai 
[44] 

The use of mineral-based inoculate (silica smoke, cement dust and rice husk ash), nutrient 

broth, urea and  
[45] 

The use of soy urease, urea and calcium chloride [46] 

The use of a solution obtained from ureolytic bacteria cultivated in a medium of corn steep 

liquor 
[47] 

The use of microcapsules with calcium nitrate [48] 

The use of bacteria E. coli BL21, P. putida KT2440, P. aeruginosa PAO1, S. oneidensis MR-

1, S. pasteurii DSM 33 and B. megaterium DSM 319 
[49] 

Application of microbiological technology for the formation of a protective layer of 

crystals 
[50] 

The use of bacteria Busarium cerealis, Phoma herbarum and Mucor hiemalis [51] 

The use of bacteria Sporosarcina pasteurii, calcium nitrate ( ), urea and calcium 

chloride  
[52] 

The use of urea and calcium ions [53] 

The use of Bacillus megaterium bacteria [54] 
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Continuation of Table 2 
The use of Bacillus psychrodurans LC40 bacteria [55] 

The use of bacteria Bacillus megaterium MTCC 3353 and methacaolin [56] 

The use of microorganisms to create a protective layer of crystals on the surface of concrete [57] 

The use of Bacillus sphaericus bacteria [58] 

The use of microorganisms to create a protective layer in biobetone 

[59] 

[60] 

[61] 

[62] 

[63] 

[64] 

[65] 

The use of Alkalibacterium iburiense EE1 bacteria 
[66] 

[67] 

The use of bacteria Bacillus pasteurii, Bacillus alcalophilus [68] 

The use of bacteria Sporosarcina pasteurii ATCC 11859 [69] 

The use of organic carbon and nitrate salt [70] 

Using watermelon, pumpkin and soy bean seed powder [71] 

The use of bacteria and nutrients [72] 

The use of bacteria Rhodococcus erythreus S26 [73] 

The use of chemically active magnesia cement paste containing Sporosarcina pasteurii bacte-

ria 
[74] 

The use of a mineral additive and a porous lightweight filler (pumice stone) [75] 

The use of bacteria Bacillus subtilis KCTC-3135T, Bacillus cohnii NCCP-666 and Bacillus 

sphaericus NCCP-313 
[76] 

The use of the bacteria Sporosarcina pasteurii ATCC 11859 and the native strain Lysinibacil-

lus sphaericus hass 1 
[77] 

The use of Lysinibacillus boronitolerans YS11 bacteria [78] 

The use of Bacillus sp. AK13 bacteria [79] 

The use of Lysinibacillus macroides and Bacillus licheniformis bacteria [80] 

The use of calcium lactate, calcium nitrate, calcium formate, urea and yeast extract [81] 

The use of glucose [82] 

The use of Ralstonia eutropha H16 bacteria [83] 

The use of Bacillus cereus bacteria [84] 

The use of bacteria, soil, lentil seeds, etc. [85] 

The use of biological products containing bacteria and organic biocomponents [86] 
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Continuation of Table 2 
The use of Lysinibacillus sphaericus bacteria [87] 

The use of bacteria and aluminum oxide [88] 

The use of S. pasteurii and B. subtilis bacteria [89] 

The use of Bacillus subtilis natto bacteria [90] 

The use of silicate solutions; sodium silicate, potassium silicate and lithium silicate as the 

main agents, as well as urea, sodium polyacrylate, catalysts and fluorocarbon surfactants as 

auxiliary substances to identify their effect on the durability of concrete 

[91] 

 

The above-mentioned studies prove the effective-

ness of alternative nutrient media. The effect of the 

origin of bacterial species on the effectiveness of nu-

trient media is still unclear. Bacterial species isolated 

from plants grow better in an environment with soil 

extract. Using their native nutrients leads to better bi-

ocementation efficiency, although they can still grow 

on other media. If bacterial species need to be cultured 

on a large scale for biocementation, then using their 

native nutrient sources can help achieve effective bio-

cementation at significantly lower cost. If industrial 

waste is used as an alternative nutrient medium, it 

should be sterilized to prevent contamination. The pH 

of the medium should be maintained in a certain range 

suitable for bacterial growth [92]. Nutrient concentra-

tions in the medium should also be optimized for bac-

terial growth. Too few or too many nutrients can 

negatively affect bacterial growth. 

Problems of biomineralization 

Problems related to the effectiveness  

of microbial species 

Many researchers have tried to figure out the rela-

tionship or interactions between different microbes 

and their effect on the effectiveness of biocementa-

tion. In the study [44], the effectiveness of biocemen-

tation of combinations of priestia megaterium, neo-

bacillus drentensis, sporosarcina pasteurii, bacillus 

subtilis and priestia aryabhattai was studied for their 

ability to induce the process of microbially induced 

precipitation of calcium carbonate, especially in alka-

line and high-temperature environments. The results 

showed that strains TBRC 1396 and TBRC 8147, as 

well as strains TBRC 5949 (Bacillus subtilis) and 

TBRC 8986 (priestia aryabhattai) are able to generate 

calcium carbonate at a pH of 9-12 and a temperature 

of 30-40° C, which is suitable for construction and 

compaction purposes. Strain TBRC 8147 also demon-

strated deposition of  at 45°C. Strains TBRC 

8986 and TBRC 8147 are non-ureolytic bacteria ca-

pable of microbially induced precipitation of calcium 

carbonate in the absence of urea, which can be used to 

prevent the formation of undesirable ammonia associ-

ated with the ureolytic process of microbially induced 

precipitation of calcium carbonate. However, the 

question of choosing the optimal conditions for bio-

cementation and ensuring the stability and preserva-

tion of the properties of bacteria remains open. The 

research does not address the issue of the long-term 

behavior of biobetone under operating conditions and 

the need to take into account long-term effects. The 

problem of insufficient calcite production also re-

quires further research, taking into account the eco-

nomic benefits and accessibility. 

In research [23, 30, 41, 44, 31, 52, 32, 69, 33, 74, 

34, 77, 36, 37] the influence of bacteria was consid-

ered sporosarcina pasteurii on the biomineralization of 
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concrete. Despite the ability of this strain to restore 

concrete by calcite deposition and despite the im-

provement of the mechanical properties of biobetone, 

the issue of low growth of sporosarcina pasteurii bac-

teria remains relevant, which slows down the process 

of biocementation; the issue of creating optimal con-

ditions for the growth of this strain and their ability to 

survive in operating conditions has not been suffi-

ciently studied. 

On the other hand, microencapsulation technology 

can be used to protect bacteria from harmful environ-

mental influences. [17, 93, 92, 94, 48, 62, 95], this, 

among other things, also makes it possible to control 

the release of bacteria into the environment. Micro-

capsules help to increase the active preservation time 

of bacteria, thereby reducing their losses. But for this, 

microcapsules need to create optimal conditions that 

will not destroy them, but on the contrary will con-

tribute to their safety. There is also a problem of uni-

form distribution of bacteria in the concrete mixture, 

which leads to insufficient mineralization of the mate-

rial. Among other things, when using microcapsules, 

it is necessary to study the issue of their interaction 

with other additives and concrete components in order 

to avoid negative consequences. 

More focused research is needed to understand the 

complexities of the interaction of different bacterial 

species and their impact on biocementation. 

It is necessary to replenish research in the field of 

optimization of microcapsulation technology and their 

uniform distribution and interaction with other addi-

tives and components of concrete, to investigate the 

issue of optimizing conditions for the growth and sur-

vival of bacteria. Also, to study the long-term behav-

ior of biobetone under operating conditions and pay 

attention to the economic benefits and availability of 

components for biomineralization. 

Problems related to the source of calcium 

No biocementation process can take place without 

the presence of a calcium source. Calcium ions from 

the calcium source combine with carbonate ions 

formed during the hydrolysis of urea to form , 

which precipitates in the matrix of building materials 

[96]. 

Calcium chloride  is the most widely used 

source of calcium in research related to biocementa-

tion. This is due to the fact that  is highly solu-

ble in water and, thus, is able to release a large 

amount of calcium ions, which leads to an increase in 

the efficiency of the biocementation process. Howev-

er, the presence of chlorides in salt can cause corro-

sion of embedded reinforcement in reinforced con-

crete structures. Therefore, many researchers have 

conducted work on alternative sources of calcium, 

both organic and inorganic in nature, to study their 

effectiveness in biocementation. Many research 

groups have also tried to make the biocementation 

process more sustainable and economical by extract-

ing calcium from various waste sources as well. Table 

3 lists some of the most significant studies of alterna-

tive sources of calcium. 
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Table 3 

Research on finding alternative sources of calcium . 

A source of calcium 

Types 

of bacteria 
Results Notes 

Li

nk 

Хлорид кальция, ацетат кальция, нитрат кальция 

Sporosarcina 

pasteurii 

The compressive and tensile 

strength of the samples treated 

with calcium acetate was ap-

proximately twice as high as 

that of the samples treated with 

two other calcium sources. 

Calcium acetate can replace calcium chlo-

ride, which causes corrosion of reinforce-

ment in reinforced concrete. 

[97] 

Calcium Chloride, Calcium Acetate, Calcium Nitrate 

Sporosarcina 

pasteurii 

Deposition  it was high-

est when using calcium acetate 

and lowest when using calcium 

nitrate 

Calcium acetate has proven to be the best 

source of calcium, compared to the other two 

sources, because  reacts with  

with education , what reduces 

emissions .  increases the rate 

of mineralization due to its relatively high 

molar mass. 

[98] 

Eggshell 

Bacillus sp. 

The compressive strength of 

the eggshell-treated samples 

was higher than that of the cal-

cium chloride-treated samples. 

The use of eggshells as a source of soluble 

calcium ions significantly reduces the costs 

associated with the use of laboratory-grade 

calcium salts. 

[99] 

Limestone and lignocellulose biomass 

Sporosarcina 

pasteurii 

The technical properties of 

sand treated with calcium ob-

tained from limestone were 

comparable to calcium chloride 

of laboratory origin. 

Limestone powder, formed as airborne pol-

lutants from aggregate quarries, reduces the 

environmental impact of limestone powder 

and makes the calcium deposition process 

more stable. 

[100

] 
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Continuation of Table 3 
Calcium Chloride, Calcium Acetate, Calcium Nitrate 

Bacillus ce-

reus 

Deposition  it was high-

est when using calcium acetate 

and lowest when using calcium 

nitrate. 

Calcium acetate, which is a weak acid, leads 

to minimal loss and, therefore, the maximum 

deposition . The use of calcium ace-

tate replaces  as a source of calcium 

ions and, therefore, compensates for the dis-

advantage associated with . 

[101

] 

Нитрат кальция и лактат кальция 

Sporosarcina 

pasteurii 

Deposition rate  using 

calcium lactate was twice as 

high as using calcium nitrate. 

Organic sources of calcium can replace inor-

ganic ones and lead to the formation of more 

sediment. 

[102

] 

 

Due to the limited solubility of calcium hydroxide 

contained in concrete, it is difficult to use it for bio-

cementation, which requires the need to use an exter-

nal calcium source to ensure effective precipitation of 

calcium carbonate. In the case of concrete mixed with 

mineral additives, calcium hydroxide is also required 

for the formation of secondary calcium silicate hy-

drate, therefore, for effective biocementation, it re-

quires a larger amount of calcium source than conven-

tional concrete. The efficiency of biocementation is 

directly proportional to the solubility of the calcium 

source, since it ensures the effective dissociation of 

 ions in a pore solution and, thus, leads to the 

effective deposition of  in the matrices of ce-

ment-based materials. However, if the calcium source 

is added in excess, it can be washed out, which will 

lead to porosity of the concrete and affect its durabil-

ity. 

Problems related to the use of urea 

The ureolytic pathway is the most common and 

widely used mechanism of biocementation. However, 

the use of the ureolytic pathway is associated with 

some disadvantages. Ureolysis inevitably leads to the 

release of gaseous ammonia (Figure 1) Ammonia can 

have harmful effects on human health and the envi-

ronment [103]. 

With an excess of ammonia, if an excessive 

amount of ammonium is present in the concrete mix-

ture, biobetone self-damages, since it can turn into 

nitric acid, increasing the risk of corrosion of steel in 

reinforced concrete [104]. 

The accumulation of ammonia can also interfere 

with biocementation, leading to low-quality precipita-

tion. Excessive levels of ammonia can disrupt vital 

cellular functions and interfere with the metabolic 

processes of bacteria, thereby reducing their ability to 

produce urease enzymes. In addition, the volatilization 

of ammonia in ureolytic systems causes a decrease in 

pH, leading to the dissolution of previously precipitat-

ed  [105]. 

All of the above aspects require that ammonia 

emissions be taken into account when researching and 

identifying effective methods for precipitation of cal-

cium carbonate. 
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Problems related to the immobilization of bio-

cementing agents to improve the self-healing ability  

of cement-based materials and related solutions 

There are several approaches regarding the inclu-

sion of immobilized biocementitious bacteria, nutri-

ents and precursors (a source of urea and calcium in 

the case of urea hydrolysis) in cement-based materials 

[106]. The most common inclusion methods include 

the use of: 

1. Separate capsules for bacterial spores and other 

components. With this approach, bacterial spores are 

encapsulated in one set of capsules, while other com-

ponents or materials are encapsulated separately. 

2. Single capsules with separate layers. This meth-

od involves the use of a single capsule containing bac-

terial spores in one layer, and other ingredients or 

components in a separate layer. These layers are de-

signed to separate the capsules until they break or dis-

solve, which usually requires certain conditions, such 

as a change in pH. It is expected that after the capsule 

is destroyed, spores and other components will react 

with each other inside the concrete [107]. 

3. Bacterial spores and other components embed-

ded in individual porous materials. This approach in-

volves the introduction of bacterial spores and other 

components into various porous materials, which are 

usually aggregates for concrete. When cracks appear, 

moisture penetrates these porous materials and simul-

taneously releases spores and other components, al-

lowing them to interact and participate in crack heal-

ing [108]. 

Although encapsulation of biocementitious agents 

is one of the most common methods of their long-term 

preservation, this is associated with a number of prob-

lems. The capsules must be strong enough to resist 

abrasion during concrete mixing, but at the same time 

they must be sensitive enough to feel the appearance 

of cracks and automatically collapse with the release 

of calcium carbonate. Both options are mutually ex-

clusive. 

As a rule, bacterial spores, precursors and nutrients 

are enclosed in separate capsules, which makes it dif-

ficult to control their distribution in cement-based ma-

terials. Ideally, when cracks form in concrete, the var-

ious capsules containing spores and nutrients should 

be positioned next to each other and burst at the same 

time to ensure the deposition of  and the heal-

ing of the crack. The effectiveness of biocementation 

in the event of cracks has not been studied. 

The application of microbiological calcium deposi-

tion can be expanded by identifying problems and 

promoting solutions proposed in various studies. 

Some changes in the use of alternative sources of 

urease and calcium may lead to a significant increase 

in the efficiency of biocementation. The limitations of 

the urea hydrolysis pathway during the precipitation 

of calcium carbonate can be mitigated by ammonifica-

tion, denitrification, the use of carbonic anhydrase, 

etc. 

The correct choice of methods for the immobiliza-

tion of bio-cementing agents in cement-based material 

matrices is crucial for effective bio-cementation. 

Conclusions 

Research interest in the field of biocementation of 

materials increased significantly between 2019 and 

March 2024, which indicates an increasing desire to 

introduce this method into construction. 

The current work presents the following results: 

1. A detailed method of literature search is pre-

sented and the identified sources for a certain period 

are systematized. 

2. The process of biomineralization is considered. 
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3. The process of biocementation is considered, in-

cluding the ways of precipitation of calcium car-

bonate, hydrolysis of urea and the mechanism of self-

healing of biobetone. 

4. The existing problems of biomineralization re-

lated to the effectiveness of species of microorgan-

isms, with sources of calcium, with the use of urea 

and with the immobilization of biocementizing agents 

are considered. 

Mixed microbial cultures are the preferred choice 

in terms of biocementation efficiency compared to 

isolated species, as they can form beneficial microbial 

associations that allow them to individually withstand 

highly alkaline conditions in cement-based materials. 

To ensure effective biocementation in cement-

based materials, it is extremely important to choose a 

non-corrosive calcium source that has higher solubili-

ty in pore solution and minimal effect on cement hy-

dration. 

To reduce the undesirable concentration of ammo-

nia produced by the ureolytic method of biocementa-

tion, the deposition of struvite as an alternative to cal-

cium carbonate or the use of alternative methods, bio-

cementation methods that completely eliminate the 

production of ammonia can be studied. 

Porous fillers are the preferred option for the im-

mobilization of bacteria in cement-based materials 

compared to encapsulation in natural and artificial 

organic materials, since the former provide better 

compatibility with the cement-based matrix and the 

correct distribution of bio-cementing agents. 

More focused research is needed to understand the 

complexities of the interaction of different bacterial 

species and their impact on biocementation. 

It is necessary to replenish research in the field of 

optimization of microcapsulation technology and their 

uniform distribution and interaction with other addi-

tives and components of concrete, to investigate the 

issue of optimizing conditions for the growth and sur-

vival of bacteria. Also, to study the long-term behav-

ior of biobetone under operating conditions and pay 

attention to the economic benefits and availability of 

components for biomineralization. 

Due to the limited solubility of calcium hydroxide 

contained in concrete, it is difficult to use it for bio-

cementation, which requires the need to use an exter-

nal calcium source to ensure effective precipitation of 

calcium carbonate. In the case of concrete mixed with 

mineral additives, calcium hydroxide is also required 

for the formation of secondary calcium silicate hy-

drate, therefore, for effective biocementation, it re-

quires a larger amount of calcium source than conven-

tional concrete. The efficiency of biocementation is 

directly proportional to the solubility of the calcium 

source, since it ensures the effective dissociation of 

 ions in a pore solution and, thus, leads to the 

effective deposition of  in the matrices of ce-

ment-based materials. However, if the calcium source 

is added in excess, it can be washed out, which will 

lead to porosity of the concrete and affect its durabil-

ity. 

The correct choice of methods for the immobiliza-

tion of bio-cementing agents in cement-based material 

matrices is crucial for effective bio-cementation. 
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