Effective methods of concentration and purification of omega-3 polyunsaturated fatty acids: a systematic review and prospects


Citar

Texto integral

Resumo

the article is devoted to methods of concentrating and purifying omega-3 polyunsaturated fatty acids (PUFAs). The text discusses methods such as transesterification, urea complexation, chromatographic methods, low-temperature crystallization, supercritical fluid extraction, molecular distillation, and iodolactonization. The aim of the research is to systematize literature data to identify the most effective methods for obtaining purified, concentrated omega-3 PUFAs. The methods include transesterification for converting triglycerides into ethyl esters, urea complexation for separating fatty acids, chromatographic methods for high product purity, low-temperature crystallization for simplicity and cost-effectiveness, supercritical fluid extraction for environmental cleanliness and efficiency, molecular distillation for high selectivity, and iodolactonization for prospective separation of omega-3 acids. The article discusses the advantages and disadvantages of methods for concentrating omega-3 PUFAs. It also considers the prospects for developing effective and economical methods of enriching omega-3 fatty acids to reduce costs and meet future demand for highly purified products.

Sobre autores

I. Zhuravlev

Far Eastern Federal University

A. Bocharnikov

Far Eastern Federal University

E. Maskin

Far Eastern Federal University

D. Solodiy

Far Eastern Federal University

P. Shinkaruk

Far Eastern Federal University

Bibliografia

  1. Lund J., Rustan A.C. Fatty acids: Structures and properties // eLS. John Wiley & Sons, Ltd, 2020. P. 283 – 292.
  2. Puri M., Thyagarajan T., Gupta A., Barrow C.J. Omega-3 Fatty Acids Produced from Microalgae // Springer Handbook of Marine Biotechnology / ed. S.-K. Kim. Berlin, Heidelberg: Springer, 2015. P. 1043 – 1057. URL: https://doi.org/10.1007/978-3-642-53971-8_45 (date accessed: 15.04.2024)
  3. Mori T.A. Marine OMEGA-3 fatty acids in the prevention of cardiovascular disease // Fitoterapia. 2017. Vol. 123. P. 51 – 58. doi: 10.1016/j.fitote.2017.09.015
  4. Shirai N., Higuchi T., Suzuki H. Analysis of lipid classes and the fatty acid composition of the salted fish roe food products, Ikura, Tarako, Tobiko and Kazunoko // Food Chemistry. 2006. Vol. 94. № 1. P. 61 – 67. doi: 10.1016/j.foodchem.2004.10.050
  5. Oliveira A.C., Bechtel P.J. M. Lipid Composition of Alaska Pink Salmon (Oncorhynchus gorbuscha) and Alaska Walleye Pollock (Theragra chalcogramma) Byproducts. doi: 10.1300/J030v14n01_07 // Journal of Aquatic Food Product Technology. 2005. URL: https://www.tandfonline.com/doi/abs/10.1300/J030v14n01_07 (дата обращения: 05.7.2024)
  6. Fialkow J. Omega-3 Fatty Acid Formulations in Cardiovascular Disease: Dietary Supplements are Not Substitutes for Prescription Products. doi: 10.1007/s40256-016-0170-7 // American Journal of Cardiovascular Drugs: Drugs, Devices, and Other Interventions. 2016. Vol. 16. № 4. P. 229 – 239.
  7. Sijtsma L., M.E. de Swaaf Biotechnological production and applications of the omega-3 polyunsaturated fatty acid docosahexaenoic acid // Applied Microbiology and Biotechnology. 2004. Vol. 64. № 2. P. 146 – 153. doi: 10.1007/s00253-003-1525-y
  8. Bjelková M., Nôžková J., Fatrcová-Šramková K., Tejklová E. Comparison of linseed (Linum usitatissimum L.) genotypes with respect to the content of polyunsaturated fatty acids // Chemical Papers. 2012. Vol. 66. № 10. P. 972 – 976. doi: 10.2478/s11696-012-0209-4
  9. Cholewski M., Tomczykowa M., Tomczyk M. A Comprehensive Review of Chemistry, Sources and Bioavailability of Omega-3 Fatty Acids. doi: 10.3390/nu10111662 // Nutrients. 2018. Vol. 10. № 11. P. 1662.
  10. Whelan J., Hardy R., Wilkes R.S., Valentin H.E. Sustainable Production of Omega-3 Fatty Acids // Convergence of Food Security, Energy Security and Sustainable Agriculture / eds. D. D. Songstad [et al.]. Berlin, Heidelberg: Springer, 2014. P. 129 – 169. URL: https://doi.org/10.1007/978-3-642-55262-5_7 (date accessed: 05.07.2024)
  11. Knight H.B., Witnauer L.P., Coleman J.E., Noble W.R.Jr., Swern D. Dissociation temperatures of urea complexes of long-chain fatty acids, esters, and alcohols // Anal. Chem. 1952. Vol. 24. P. 1331 – 1334.
  12. Тютюнников Б.Н. Химия жиров: учебник для студентов высш. учеб. заведений по специальностям пищевой пром-сти. 2-е изд., перераб. и доп. Москва: Пищ. пром-сть, 1974. 446 с.
  13. Magallanes L.M., Tarditto L.V., Grosso N.R. Highly concentrated omega-3 fatty acid ethyl esters by urea complexation and molecular distillation // Journal of the Science of Food and Agriculture. 2019. Vol. 99. № 2. P. 877 – 884. doi: 10.1002/jsfa.9258
  14. Lin W., Wu F.W., Yue L. et al. Combination of Urea Complexation and Molecular Distillation to Purify DHA and EPA from Sardine Oil Ethyl Esters. URL: https://aocs.onlinelibrary.wiley.com/doi/10.1007/s11746-013-2402-1 (date accessed: 05.07.2024) doi: 10.1007/s11746-013-2402-1
  15. Phadtare I., Vaidya H., Hawboldt K., Cheema S.K. Shrimp Oil Extracted from Shrimp Processing By-Product Is a Rich Source of Omega-3 Fatty Acids and Astaxanthin-Esters, and Reveals Potential Anti-Adipogenic Effects in 3T3-L1 Adipocytes // Marine Drugs. 2021. Vol. 19. № 5. P. 259. doi: 10.3390/md19050259
  16. Dillon J.T., Aponte J.C., Tarozo R., Huang Y. 1. Purification of omega-3 polyunsaturated fatty acids from fish oil using silver-thiolate chromatographic material and high performance liquid chromatography // Journal of Chromatography A. 2013. Vol. 1312. P. 18 – 25. doi: 10.1016/j.chroma.2013.08.064
  17. Oh C.-E., Kim G.-J., Park S.-J. et al. Purification of high purity docosahexaenoic acid from Schizochytrium sp. SH103 using preparative-scale HPLC // Applied Biological Chemistry. 2020. Vol. 63. № 1. P. 56. doi: 10.1186/s13765-020-00542-w
  18. Wei B., Wang S.Separation of eicosapentaenoic acid and docosahexaenoic acid by three-zone simulated moving bed chromatography // Journal of Chromatography A. 2020. Vol. 1625. P. 461326. doi: 10.1016/j.chroma.2020.461326
  19. Bonilla J.R., Hoyos Concha J.L. Methods of extraction, refining and concentration of fish oil as a source of omega-3 fatty acid. Ciencia Y Tecnología Agropecuaria. 2018. Vol. 19. № 3. P. 621 – 644. doi: 10.21930/rcta.vol19_num2_art:684
  20. Bárcenas-Pérez D., Lukeš M., Hrouzek P. A biorefinery approach to obtain docosahexaenoic acid and docosapentaenoic acid n-6 from Schizochytrium using high performance countercurrent chromatography // Algal Research. 2021. Vol. 55. P. 102241. doi: 10.1016/j.algal.2021.102241
  21. Lei Q., Ba S., Zhang H. Enrichment of omega-3 fatty acids in cod liver oil via alternate solvent winterization and enzymatic interesterification // Food Chemistry. 2016. Vol. 199. P. 364 – 371. doi: 10.1016/j.foodchem.2015.12.005
  22. Vázquez L., Akoh C.C. Enrichment of stearidonic acid in modified soybean oil by low temperature crystallisation // Food Chemistry. 2012. Vol. 130. № 1. P. 147 – 155. doi: 10.1016/j.foodchem.2011.07.022
  23. Namal Senanayake S.P.J. 17 – Methods of concentration and purification of omega-3 fatty acids // Separation, Extraction and Concentration Processes in the Food, Beverage and Nutraceutical Industries: Woodhead Publishing Series in Food Science, Technology and Nutrition / ed. S.S. H. Rizvi. Woodhead Publishing, 2013. P. 483 – 505. URL: https://www.sciencedirect.com/science/article/pii/B9781845696450500177 (дата обращения: 05.07.2024)
  24. Senanayake S.N. Methods of concentration and purification of omega-3 fatty acids // Separation, extraction and concentration processes in the food, beverage and nutraceutical industries – Elsevier, 2013. P. 483 – 505.
  25. Lei Q., Ba S., Zhang H. Enrichment of omega-3 fatty acids in cod liver oil via alternate solvent winterization and enzymatic interesterification // Food Chemistry. 2016. Vol. 199. P. 364 – 371. doi: 10.1016/j.foodchem.2015.12.005
  26. Chen T.-C., Ju Y.-H. Polyunsaturated fatty acid concentrates from borage and linseed oil fatty acids // Journal of the American Oil Chemists’ Society. 2001. Vol. 78. № 5. P. 485 – 488. doi: 10.1007/s11746-001-0290-3
  27. Brunner G. Supercritical fluids: technology and application to food processing: IV Iberoamerican Congress of Food Engineering (CIBIA IV) // Journal of Food Engineering. 2005. Vol. 67. № 1. P. 21 – 33. doi: 10.1016/j.jfoodeng.2004.05.060
  28. Mishra V.K., Temelli F., Ooraikul B. Extraction and purification of ω-3 fatty acids with an emphasis on supercritical fluid extraction – A review // food research international. 1993. Vol. 26. № 3. P. 217 – 226.
  29. Wanasundara U.N., Wanasundara J., Shahidi F. Omega-3 fatty acid concentrates: a review of production technologies // Seafoods – quality, technology and nutraceutical applications. 2002. P. 157 – 174.
  30. Nilsson W.B., Gauglitz Jr. E.J., Hudson J.K. 1. Fractionation of menhaden oil ethyl esters using supercritical fluid CO2 // Journal of the American Oil Chemists’ Society. 1988. Vol. 65. № 1. P. 109 – 117. DOI: https://doi.org/10.1007/BF02542560
  31. Létisse M., Rozières M., Hiol A.Enrichment of EPA and DHA from sardine by supercritical fluid extraction without organic modifier: I. Optimization of extraction conditions // The Journal of Supercritical Fluids. 2006. Vol. 38. № 1. P. 27 – 36. doi: 10.1016/j.supflu.2005.11.013
  32. Ferdosh S., Sarker M.Z.I., Rahman N.N.N.A. Supercritical carbon dioxide extraction of oil from Thunnus tonggol head by optimization of process parameters using response surface methodology // Korean Journal of Chemical Engineering. 2013. Vol. 30. № 7. P. 1466 –1472. doi: 10.1007/s11814-013-0070-3
  33. Ahmed R., Haq M., Cho Y.-J., Chun B.-S. Quality evaluation of oil recovered from by-products of bigeye tuna using supercritical carbon dioxide extraction // Turkish Journal of Fisheries and Aquatic Sciences. 2017. Vol. 17. № 4. P. 663 – 672.
  34. Rubio-Rodríguez N., de Diego S.M., Beltrán S. Supercritical fluid extraction of the omega-3 rich oil contained in hake (Merluccius capensis – Merluccius paradoxus) by-products: Study of the influence of process parameters on the extraction yield and oil quality // The Journal of Supercritical Fluids. 2008. Vol. 47. № 2. P. 215 – 226. doi: 10.1016/j.supflu.2008.07.007
  35. Alkio M., Gonzalez C., Jäntti M., Aaltonen O.Purification of polyunsaturated fatty acid esters from tuna oil with supercritical fluid chromatography // Journal of the American Oil Chemists’ Society. 2000. Vol. 77. № 3. P. 315 – 321. doi: 10.1007/s11746-000-0051-3
  36. Davarnejad R. et al. Extraction of fish oil by fractionation through supercritical carbon dioxide // Journal of Chemical & Engineering Data. 2008. Vol. 53. № 9. P. 2128 – 2132.
  37. Magallanes L.M. et al. Highly concentrated omega‐3 fatty acid ethyl esters by urea complexation and molecular distillation // Journal of the Science of Food and Agriculture. 2019. Vol. 99. № 2. P. 877 – 884.
  38. Latyshev N.A., Ermolenko E.V., Kasyanov S.P. Concentration and purification of polyunsaturated fatty acids from squid liver processing wastes // European Journal of Lipid Science and Technology. 2014. Vol. 116. № 11. P. 1608 – 1613. doi: 10.1002/ejlt.201400083

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML


Creative Commons License
Este artigo é disponível sob a Licença Creative Commons Atribuição 4.0 Internacional.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).