Optimization of the flow part of the microfluidic channel


如何引用文章

全文:

详细

n this paper, the features of microfluidic channel optimization are considered. The microfluidic channel is a key component of the microreactor, its shape and features of the hydrodynamic regime directly affect the successful course of chemical reactions carried out in it. The microfluidic industry regulates processes occurring in small volumes of liquids – on the order of a nano liter or less. It is applicable to various fields such as microelectronics, pharmaceuticals, specialty chemicals, etc. The Comsol Multiphysics computational modeling program was used as an optimization tool. It is based on the finite element method, which allows you to accurately model the problems of the hydrodynamic profile. In this article, the simplest form of a microchannel is considered – a 0.75 mm circular channel with a mixing cell. The mathematical modeling of the process is given, the optimality criterion adequate for the task is determined. As one of the components of this criterion, diodicity was used – a criterion that determines the ability to pass a stream in the forward direction, provided there is a reverse flow. As a result of this work, the most optimal shape of the microreactor channel satisfying the required process conditions was identified, the main hydrodynamic parameters were obtained and the dependence of the diode on the criterion used was determined.

作者简介

M. Shishanov

D.I. Mendeleev Russian University of Chemical Technology

ORCID iD: 0000-0003-2861-5878

Kh. Kuk

D.I. Mendeleev Russian University of Chemical Technology

ORCID iD: 0009-0005-7115-6760

V. Eremin

D.I. Mendeleev Russian University of Chemical Technology

参考

  1. Шишанов М.В., Кук Х.Г., Досов К.А., Яшунин Д.В., Большаков И.А., Морозов Н.В. Моделирование проточных микрореакторов // Современные наукоемкие технологии .Региональное приложение. 2023. № 75 (3). С. 97 – 106.
  2. Шишанов М.В., Кук Х.Г., Досов К.А., Яшунин Д.В., Большаков И.А., Морозов Н.В. Смешение в микрофлюидике // Современные наукоёмкие технологии. Региональное приложение. 2023. № 4 (76). С. 103 – 109.
  3. Данилов Ю.М., Мухаметзянова А.Г., Кульментьева Е.И., Петровичева Е.А. Исследование турбулентного смешения двухкомпонентной смеси в трубе с периодически меняющимся сечением // Вестник Казанского технологического университета, 2018. № 2. С. 172 – 179.
  4. Данилов Ю.М., Дьяконов Г.С., Мухаметзянова А.Г., Бергман А.Н., Ильина И.М. Оптимизация формы проточной части трубчатых турбулентных реакторов // Вестник Казанского технологического университета. 2013. № 1. С. 116 – 124.
  5. Mohammadi B., Pironneau O. Applied shape optimization for fluid s// OUP Oxford. 2009.
  6. Andrea M., Alfio Q., Gianluigi R. Shape optimization for viscous flows by reduced basis methods and free-form deformation // Numerical methods of fluids. 2012. № 70 (5). P. 646 – 670. doi: 10.1002/fld.2712
  7. Bardell R.L. The diocity mechanism of Tesla-type no-moving parts valves, Ph.D. Thesis, University of Washington, USA, 2019.
  8. Nobaknt A.Y., Shahsavan M., Paykani A., Numerical Study of Diodicity Mechanism in Different Tesla-Type Microvalves // Journal of Applied Research and Technology, 2019. № 11 (6). P. 876 – 885.
  9. Wang P., Hu P., Liu L., Xu Z., Wang W., Benoit S. On the diodicity enhancement of multistage Tesla valves // Physics of Fluids, 2023. № 35 (5). P. 113 – 124.
  10. Doddamani H., Tapas K.D., Manabu T., Abdus S. Design Optimization of a Fluidic Diode for a Wave Energy Converter via Artificial Intelligence-Based Technique // Arabian Journal for Science and Engineering, 2022. № 48. P. 11407 – 11423.

补充文件

附件文件
动作
1. JATS XML


Creative Commons License
此作品已接受知识共享署名 4.0国际许可协议的许可

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).