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ИНТЕГРАЛЬНОЕ ПРЕДСТАВЛЕНИЕ ЯДРА ОПЕРАТОРА,
АППРОКСИМИРУЮЩЕГО ОБРАТНЫЙ ОПЕРАТОР ДЛЯ

ГИПЕРБОЛИЧЕСКОГО B -ПОТЕНЦИАЛА РИССА

c⃝ Э.Л. Шишкина

В статье рассматривается ядро, предел обобщенной свертки с которым реализует об-
ратный оператор для гиперболического потенциала Рисса, порожденного многомерным
обобщенным сдвигом. Для такого ядра получено представление в виде интеграла, со-
держащего функцию Аппеля F4 .
Ключевые слова: расстояние Лоренца, преобразование Фурье–Бесселя, B -потенциал
Рисса, функция Аппеля.

Введение

Одним из наиболее полезных и хорошо изученных уравнений математической физики яв-
ляется гиперболическое уравнение вида

� = 0, � =
∂2

∂x21
−

n∑
i=2

∂2

∂x2i
.

Это уравнение является частным случаем как уравнения Эйлера–Пуассона–Дарбу

Bγ1 −
n∑

i=2

∂2

∂x2i
= 0,

где γ1> 0 ,

Bγ1=
∂2

∂x21
+

γ

x1

∂

∂x1
(1)

— сингулярный дифференциальный оператор Бесселя, так и обобщенного уравнения Эйлера–
Пуассона–Дарбу или, следуя терминологии И. А. Киприянова, B -гиперболического уравнения

�γ = 0,

�γ = Bγ1 −
n∑

i=2

Bγi , γi > 0, i = 1, ..., n.

В связи с развитием дробного интегро-дифференциального исчисления особый интерес
представляет изучение дробных степеней операторов � и �γ . Отрицательная дробная
степень волнового оператора � называется гиперболическим потенциалом Рисса (см. [1]
стр. 406, [2]). Такие потенциалы изучались в работах [1]–[6] с использованием преобразо-
вания Фурье. Отрицательная дробная степень оператора �γ , называемая гиперболическим
B -потенциалом Рисса, была рассмотрена в [7].

Дробные степени операторов, содержащих сингулярный дифференциальный оператор Бес-
селя (1) обычно изучаются в образах преобразования Фурье–Бесселя (см. [8]–[10]). Так в ра-
ботах [11]–[16] с помощью этого подхода были изучены эллиптические B -потенциалы Рисса,
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которые являются отрицательными степенями оператора △γ =
n∑

k=1

Bγk . Однако существует и

прямой подход, при котором дробные степени этого оператора строятся в явном интегральном
виде, аналогично дробным интегралам Римана–Лиувилля (см. [17]–[18]). Более абстрактный
подход к построению подобных операторов разработан в связи с теорией дифференциальных
уравнений и функций гипербесселевого типа, а также обобщенных операторов преобразования
(см. [19], [20]).

1. Основные определения

Положим
R+
n={x=(x1, . . . , xn)∈Rn, x1>0, ..., xn>0}.

Пусть γ=(γ1, ..., γn) – мультииндекс, состоящий из фиксированных положительных чисел
и |γ|=γ1+. . .+γn .

Следуя И. А. Киприянову, функцию определенную на R+
n будем называть четной по xi ,

если она может быть продолжена на Rn четным образом по переменной xi с сохранением
класса принадлежности функции.

Через Sev=Sev(R+
n ) будем обозначать часть класса функций Шварца, состоящее из четных

по каждой из своих переменных функций, определенных на R+
n .

Преобразование Фурье–Бесселя имеет вид (см. [8]):

FB[φ](ξ) = φ̂(ξ) =

∫
R+
n

jγ(x; ξ)φ(x)x
γ dx, xγ =

n∏
i=1

xγii .

Здесь jγ(x; ξ)=
n∏

j=1
j γj−1

2

(xjξj) , а функция jν(t) связана с функцией Бесселя первого рода

Jν(t) соотношением

jν(t) = 2ν Γ(ν + 1)
Jν(t)

tν
. (2)

Для функций из Sev преобразование FB обратимо и обратное преобразование имеет вид

F−1
B [f̂ ](x)=f(x) =

2n−|γ|

n∏
j=1

Γ2
(
γj+1
2

) FB[f̂ ](x).

Многомерный оператор Пуассона имеет вид (см. [8])

Pγ
xf(x) = C(γ)

π∫
0

...

π∫
0

f(x1 cosα1, ..., xn cosαn)

n∏
j=1

sinγj−1 αj dαj ,

C(γ) = π−n/2
n∏

j=1

Γ
(
γj−1
2

)
Γ
(γj

2

) .

Гиперболический B -потенциал Рисса имеет вид

(IαBf)(x) =

∫
K+

[y21 − y22 − ...− y2n]
α−n−|γ|

2 (T yf)(x)yγdy, yγ=
n∏

i=1

yγii , (3)
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где K+={y∈R+
n :y

2
1≥y22+...+y2n} . Порядок потенциала α удовлетворяет наравенствам

n+|γ|−2<α<n+|γ| . В (3) (T yf)(x)= (T y1
x1 ...T

yn
xn f)(x) — многомерный обобщенный сдвиг, каж-

дый из обобщенных сдвигов T yi
xi определен при i=1, ..., n выражением (см. [21], [22])

(T yi
xi
f)(x)=

Γ
(
γi+1
2

)
Γ
(γi
2

)
Γ
(
1
2

)×
×

π∫
0

f(x1, ..., xi−1,
√
x2i + τ2i − 2xiyi cosφi, xi+1, ..., xn) sinγi−1 φi dφi.

Пусть

wα,ε(ξ) = τ−1 |ξ21 − |ξ′|2|
α
2 e−εξ1−ε|ξ′|, τ=

{
e

απi
2 , ξ21 > |ξ′|;

1, ξ21 < |ξ′|.

Обратный к потенциалу h(x)= (IαBf)(x) оператор строится в виде

((IαB)
−1h)(x) = lim

ε→0
((IαB)

−1
ε h)(x),

где

((IαB)
−1
ε h)(x) =

∫
R+
n

T t
x(Gα,ε(x))h(t) t

γdt,

Gα,ε(x) = F−1
B [wα,ε](x) =

=
2n−|γ|

n∏
j=1

Γ2
(
γj+1
2

) ∫
R+
n

τ−1 |ξ21 − |ξ′|2|
α
2 e−εξ1−ε|ξ′| jγ(x, ξ)ξ

γ dξ =

=
2n−|γ|

n∏
j=1

Γ2
(
γj+1
2

)FB[wα,ε](x), (4)

τ = e
απi
2 при ξ21 > |ξ′| и τ =1 при ξ21 < |ξ′| .

В следующем пункте получим представление ядра Gα,ε(x) оператора (IαB)
−1
ε через ин-

теграл, содержащий функцию Аппеля F4(a, b, c1, c2;x, y) (см. [23], с. 658), которая при
|x|1/2+ |y|1/2<1 имеет вид:

F4(a, b, c1, c2;x, y) =

∞∑
m,n=0

(a)m+n(b)m+n

(c1)m(c2)nm!n!
xmyn, (5)

а при |x|1/2+ |y|1/2≥ 1 функция F4(a, b; c1, c2;x, y) понимается как аналитическое продолже-
ние, которое определяется формулами из [24]. В (5) выражение (x)n — символ Похгаммера:

(x)n =

n∏
k=1

(x+ k − 1).
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2. Интегральное представление ядра оператора, аппроксимирующего обратный
оператор для гиперболического B -потенциала Рисса

Т е о р е м а. Преобразование Фурье–Бесселя функции

wα,ε(ξ) = τ−1 |ξ21 − |ξ′|2|
α
2 e−εξ1−ε|ξ′|, τ=

{
e

απi
2 , ξ21 > |ξ′|;

1, ξ21 < |ξ′|,

имеет вид

FB[eα,ε](x) =

Γ(n+ |γ|+ α)
n∏

i=2
Γ
(
γi+1
2

)
2n−2εn+|γ|+αΓ

(
n+|γ′|−1

2

) ×

×
∞∫
0

e
απi
2

θ(1−r)(1− r2)
α
2

rn+|γ′|−2

(1 + r)n+|γ|+α
×

×F4

(
n+|γ|+α

2
,
n+|γ|+α+1

2
;
γ1+1

2
,
n+|γ′|−1

2
;− x21

(ε(1+r))2
,− (r|x′|)2

(ε(1+r))2

)
dr,

где θ(t)=

{
1, t≥ 0;
0, t < 0, — функция Хевисайда, а F4(a, b, c1, c2;x, y) — функция Аппеля, опре-

деленная формулой (5).
Д о к а з а т е л ь с т в о. Пусть gα,ε(x) = FB[τ

−1 |ξ21 − |ξ′|2|
α
2 e−εξ1−ε|ξ′|](ξ). Представим

функцию gα,ε(x) в виде суммы:

gα,ε(x) =

∫
R+
n

τ−1 |ξ21 − |ξ′|2|
α
2 e−εξ1−ε|ξ′| jγ(x, ξ)ξ

γ dξ =

= e−
απi
2

∫
ξ21>|ξ′|2

|ξ21 − |ξ′|2|
α
2 e−εξ1−ε|ξ′| jγ(x, ξ)ξ

γ dξ+

+

∫
ξ21<|ξ′|2

|ξ21 − |ξ′|2|
α
2 e−εξ1−ε|ξ′| jγ(x, ξ)ξ

γ dξ = J1(x) + J2(x).

Рассмотрим интеграл J1(x) . Имеем

J1(x) = e−
απi
2

∫
ξ21>|ξ′|2

(ξ21 − |ξ′|2)
α
2 e−εξ1−ε|ξ′| jγ(x, ξ)ξ

γ dξ =

= e−
απi
2

∞∫
0

e−εξ1 j γ1−1
2

(x1ξ1)ξ
α+γ1
1 dξ1×

×
∫

ξ21>|ξ′|2

(
1− |ξ′|2

ξ21

)α
2

e−ε|ξ′| jγ(x
′, ξ′)(ξ′)γ

′
dξ′.

Во внутреннем интеграле произведем замену переменных ξ′

ξ1
= y , а затем перейдем к сфери-

ческим координатам y=rσ , |y|=r , σ=(σ1, ..., σn−1) , получим

J1(x) = e−
απi
2

∞∫
0

e−εξ1 j γ1−1
2

(x1ξ1)ξ
n−1+α+|γ|
1 dξ1×
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×
∫

1>|y|

(1− |y|2)
α
2 e−εξ1|y| jγ(x

′, ξ1y)y
γ′
dy =

= e−
απi
2

∞∫
0

e−εξ1 j γ1−1
2

(x1ξ1)ξ
n−1+α+|γ|
1 dξ1

1∫
0

(1− r2)
α
2 rn−2+|γ′| e−εξ1rdr×

×
∫

S+
n−2

jγ(x
′, ξ1rσ)σ

γ′
dS.

Найдем ∫
S+
n−2

jγ(x
′, ξ1rσ)σ

γ′
dS =

∫
S+
n−2

Pγ′
σ (e−i⟨x′,ξ1rσ⟩)σγ

′
dS.

Используя формулу «интеграла по сфере от весовой плоской волны» (см. [25]) вида

∫
S+
1 (n)

Pγ
ξ f(⟨ξ, x⟩)x

γdωx =

n∏
i=1

Γ
(
γi+1
2

)
√
π2n−1Γ

(
|γ|+n−1

2

) 1∫
−1

f(|ξ|p)(1− p2)
n+|γ|−3

2 : dp,

получим

∫
S+
n−2

jγ(x
′, ξ1rσ)σ

γ′
dS =

n∏
i=2

Γ
(
γi+1
2

)
√
π2n−2Γ

(
n+|γ′|−2

2

) 1∫
−1

e−irξ1|x′|p(1− p2)
n+|γ′|−4

2 dp.

Последний интеграл найдем по формуле 2.3.5.3 из [26], с. 260, будем иметь

∫
S+
n−2

jγ(x
′, ξ1rσ)σ

γ′
dS =

n∏
i=2

Γ
(
γi+1
2

)
2n−2(rξ1|x′|/2)

n+|γ′|−3
2

Jn+|γ′|−3
2

(rξ1|x′|).

Тогда

J1(x) = e−
απi
2

n∏
i=2

Γ
(
γi+1
2

)
2

n−|γ′|−1
2 |x′|

n+|γ′|−3
2

∞∫
0

e−εξ1 j γ1−1
2

(x1ξ1)ξ
n+|γ|+γ1+1

2
+α

1 dξ1×

×
1∫

0

(1− r2)
α
2 r

n+|γ′|−1
2 e−εξ1r Jn+|γ′|−3

2

(rξ1|x′|)dr.

Во внешнем интеграле перейдем к функции J γ1−1
2

(x1ξ1) по формуле (2) и поменяем ме-
стами порядок интегрирования, получим

J1(x) = e−
απi
2

n∏
i=1

Γ
(
γi+1
2

)
2

n−|γ|
2 x

γ1−1
2

1 |x′|
n+|γ′|−3

2

1∫
0

(1− r2)
α
2 r

n+|γ′|−1
2 dr×

×
∞∫
0

ξ
n+|γ|

2
+α+1

1 e−εξ1(1+r)J γ1−1
2

(x1ξ1) Jn+|γ′|−3
2

(rξ1|x′|)dξ1.
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Для вычисления внутреннего интеграла применим формулу 2.12.38.2 из [23], тогда

J1(x) = e−
απi
2

Γ(n+ |γ|+ α)
n∏

i=2
Γ
(
γi+1
2

)
2n−2εn+|γ|+αΓ

(
n+|γ′|−1

2

) 1∫
0

(1− r2)
α
2

rn+|γ′|−2

(1 + r)n+|γ|+α
×

×F4

(
n+|γ|+α

2
,
n+|γ|+α+1

2
;
γ1+1

2
,
n+|γ′|−1

2
;− x21

(ε(1+r))2
,− (r|x′|)2

(ε(1+r))2

)
dr

Аналогично найдем J2(x) :

J2(x) =

n∏
i=1

Γ
(
γi+1
2

)
2

n−|γ|
2 x

γ1−1
2

1 |x′|
n+|γ′|−3

2

×

×
∞∫
1

(
1− r2

)α
2 r

n+|γ′|−1
2 dr×

×
∞∫
0

ξ
n+|γ|

2
+α+1

1 e−εξ1(1+r) J γ1−1
2

(x1ξ1) Jn+|γ′|−3
2

(rξ1|x′|) dξ1 =

=

Γ(n+ |γ|+ α)
n∏

i=2
Γ
(
γi+1
2

)
2n−2εn+|γ|+αΓ

(
n+|γ′|−1

2

) ∞∫
1

(
1− r2

)α
2

rn+|γ′|−2

(1 + r)n+|γ|+α
×

×F4

(
n+|γ|+α

2
,
n+|γ|+α+1

2
;
γ1+1

2
,
n+|γ′|−1

2
;− x21

(ε(1+r))2
,− (r|x′|)2

(ε(1+r))2

)
dr.

Складывая J1(x) и J2(x) получим утверждение теоремы. Теорема доказана.
З а м е ч а н и е. Из (4) следует, что интересующая нас функция Gα,ε(x) имеет интег-

ральное представление

Gα,ε(x) =
22−|γ|

Γ
(
γ1+1
2

) n∏
j=1

Γ
(
γj+1
2

) Γ(n+ |γ|+ α)

εn+|γ|+αΓ
(
n+|γ′|−1

2

)×

×
∞∫
0

e
απi
2

θ(1−r)(1− r2)
α
2

rn+|γ′|−2

(1 + r)n+|γ|+α
×

×F4

(
n+|γ|+α

2
,
n+|γ|+α+1

2
;
γ1+1

2
,
n+|γ′|−1

2
;− x21

(ε(1+r))2
,− (r|x′|)2

(ε(1+r))2

)
dr.
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INTEGRAL REPRESENTATION OF APPROXIMATING INVERSE OPERATORS
FOR HYPERBOLIC RIESZ B -POTENTIAL KERNEL

c⃝ E. L. Shishkina

The article deals with the special kernel. The limit of the generalized convolution with this
kernel is the inverse operator for hyperbolic Riesz potential generated by multidimensional
generalized translation. The integral representation containing Appel F4 function was
obtained for this kernel.
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