Неиммунное связывание Streptococcus pyogenes иммуноглобулинов G и A человека: роль этого феномена в патологии
- Авторы: Бурова Л.А.1, Суворов А.Н.1,2, Пигаревский П.В.1, Тотолян А.А.1
-
Учреждения:
- Институт экспериментальной медицины
- Санкт-Петербургский государственный университет
- Выпуск: Том 23, № 2 (2023)
- Страницы: 9-29
- Раздел: Аналитические обзоры
- URL: https://medbiosci.ru/MAJ/article/view/253864
- DOI: https://doi.org/10.17816/MAJ430288
- ID: 253864
Цитировать
Аннотация
М и М-подобные белки являются основными факторами патогенности широко распространенного и потенциально смертельного бактериального патогена Streptococcus pyogenes. Эти белки обеспечивают устойчивость микроба к врожденным и адаптивным иммунным реакциям, привлекая специфические белки человека на поверхность стрептококка. Неиммунное связывание иммуноглобулинов G (IgG) и A (IgA) через их Fc-домены М и М-подобными белками было описано более 50 лет назад, но его значение в патогенности S. pyogenes нельзя считать окончательно решенным. Обнаружение данного феномена следует отнести к весьма значительным достижениям современной микробиологии, поскольку он оказал огромное влияние на создание инновационных подходов, технологий и средств микробиологической, иммунологической и молекулярной диагностики. Он также повлиял на фундаментальные исследования в области патогенеза актуальных инфекционных заболеваний и их осложнений, вызываемых S. pyogenes. Предполагалось, что неиммунное связывание иммуноглобулинов хозяина имеет значение в основном при иммунных состояниях на поверхности слизистых оболочек и в секрете, но не в плазме, в то время как другие исследования свидетельствовали о важности данного феномена в защите микробов от фагоцитоза в неиммунной крови макроорганизма. Было также показано, что эффект Fc-связывания повышает патогенность стрептококков как в первичном очаге инфекции, так и при хронизации процесса, способствуя развитию аутоиммунных заболеваний, вызванных инфекцией S. pyogenes, приводя к повреждению тканей у экспериментальных животных. Экспериментальный аутоиммунный процесс можно предупредить, используя введение животным очищенных Fc-фрагментов IgG гетерологичных и аутологичных, блокируя процесс на ранних стадиях его развития.
Существенное место в патогенезе IgA-нефропатии (IgAN) принадлежит стрептококковым заболеваниям. IgAN описывают как мезангиально-пролиферативный процесс, обусловленный первоначальными отложениями микробного IgAFc-связывающего белка в клетках почечного мезангиума. Литературные данные указывают на успешное моделирование отдельных признаков IgAN и расширяют наши представления о патогенных свойствах и функциях Fcα-рецепторных М-белков S. pyogenes. Рассмотренные в обзоре данные подчеркивают также актуальность выдвигаемых представлений о важной роли неиммунного связывания иммуноглобулинов в стрептококковой патологии, даже в случаях, различающихся по механизму развития. Эти исследования, в том числе и возможный поиск средств и методов профилактической и потенциально терапевтической направленности, требуют нового внимания к исследованиям связывания Fc-фрагментов IgG и IgA М и М-подобными белками S. pyogenes.
Полный текст
Открыть статью на сайте журналаОб авторах
Лариса Александровна Бурова
Институт экспериментальной медицины
Автор, ответственный за переписку.
Email: lburova@yandex.ru
ORCID iD: 0000-0001-7687-2348
SPIN-код: 6084-1255
Scopus Author ID: 7003982261
ResearcherId: E-5270-2014
д-р мед. наук, ведущий научный сотрудник отдела молекулярной микробиологии
Россия, Санкт-ПетербургАлександр Николаевич Суворов
Институт экспериментальной медицины; Санкт-Петербургский государственный университет
Email: alexander_suvorov1@hotmail.com
ORCID iD: 0000-0003-2312-5589
SPIN-код: 8062-5281
Scopus Author ID: 7101829979
ResearcherId: J-6921-2013
д-р мед. наук, профессор, чл.-корр. РАН, руководитель отдела молекулярной микробиологии; заведующий кафедрой фундаментальных проблем медицины и медицинских технологий
Россия, Санкт-Петербург; Санкт-ПетербургПетр Валерьевич Пигаревский
Институт экспериментальной медицины
Email: pigarevsky@mail.ru
ORCID iD: 0000-0002-5906-6771
SPIN-код: 8636-4271
Scopus Author ID: 55404484800
ResearcherId: C-3425-2014
д-р биол. наук, руководитель отдела общей морфологии
Россия, Санкт-ПетербургАртем Акопович Тотолян
Институт экспериментальной медицины
Email: totolyan@hotmail.com
ORCID iD: 0000-0002-3310-9294
SPIN-код: 1741-9171
Scopus Author ID: 7004990713
ResearcherId: J-4218-2014
д-р мед. наук, профессор, академик РАН, главный научный сотрудник отдела молекулярной микробиологии
Россия, Санкт-ПетербургСписок литературы
- Carapetis J.R., Beaton A., Cunningham M.W. et al. Acute rheumatic fever and rheumatic heart disease // Nat. Rev. Dis. Primers. 2016. No. 2. ID 15084. doi: 10.1038/nrdp.2015.84
- Carapetis J.R., Steer A.C., Mulholland E.K., Weber M. The global burden of group A streptococcal diseases // Lancet. Infect. Dis. 2005. Vol. 5, No. 11. P. 685–694. doi: 10.1016/S1473-3099(05)70267-X
- Watkins D.A., Johnson C.O., Colquhoun S.M. et al. Global, regional, and national burden of rheumatic heart disease, 1990–2015 // N. Engl. J. Med. 2017. Vol. 377, No. 8. P. 713–722. doi: 10.1056/NEJMoa1603693
- Cunningham M.W. Pathogenesis of group A streptococcal infections // Clin. Microbiol. Rev. 2000. Vol. 13, No. 3. P. 470–511. doi: 10.1128/cmr.13.3.470
- Ghosh P. Variation, indispensability, and masking in the M protein // Trends Microbiol. 2018. Vol. 26, No. 2. P. 132–144. doi: 10.1016/j.tim.2017.08.002
- Phillips G.N. Jr., Flicker P.F., Cohen C. et al. Streptococcal M protein: alpha-helical coiled-coil structure and arrangement on the cell surface // Proc. Natl. Acad. Sci. USA. 2018. Vol. 78, No. 8. P. 4689–4693. doi: 10.1073/pnas.78.8.4689
- McMillan D.J., Dreze P.A., Vu T. et al. Updated model of group A Streptococcus M proteins based on a comprehensive worldwide study // Clin. Microbiol. Infect. 2013. Vol. 19, No. 5. P. E222–229. doi: 10.1111/1469-0691.12134
- Mills J.O., Ghosh P. Nonimmune antibody interactions of group A Streptococcus M and M-like proteins // PLoS Pathog. 2021. Vol. 17, No. 2. P. e1009248. doi: 10.1371/journal.ppat.1009248
- Haanes E.J., Heath D.G., Cleary P.P. Architecture of the vir regulons of group A streptococci parallels opacity factor phenotype and M protein class // J. Bacteriol. 1992. Vol. 174, No. 15. P. 4967–4976. doi: 10.1128/jb.174.15.4967-4976.1992
- Hollingshead S.K., Readdy T.L., Yung D.L., Bessen D.E. Structural heterogeneity of the emm gene cluster in group A streptococci // Mol. Microbiol. 1993. Vol. 8, No. 4. P. 707–717. doi: 10.1111/j.1365-2958.1993.tb01614.x
- Flores A.R., Olsen R.J., Wunsche A. et al. Natural variation in the promoter of the gene encoding the Mga regulator alters host-pathogen interaction in group A Streptococcus carrier strains // Infect. Immun. 2013. Vol. 81, No. 11. P. 4128–4138. doi: 10.1128/IAI.00405-13
- Facklam R., Beall B., Efstratiou A. et al. emm typing and validation of provisional M types for group A streptococci // Emerg. Infect. Dis. 1999. Vol. 5, No. 2. P. 247–253. doi: 10.3201/eid0502.990209
- Ringdahl U., Svensson H.G., Kotarsky H. et al. A role for the fibrinogen-binding regions of streptococcal M proteins in phagocytosis resistance // Mol. Microbiol. 2000. Vol. 37, No. 6. P. 1318–1326. doi: 10.1046/j.1365-2958.2000.02062.x
- Carlsson F., Sandin C., Lindahl G. Human fibrinogen bound to Streptococcus pyogenes M protein inhibits complement deposition via the classical pathway // Mol. Microbiol. 2005. Vol. 56, No. 1. P. 28–39. doi: 10.1111/j.1365-2958.2005.04527.x
- Macheboeuf P., Buffalo C., Fu C.Y. et al. Streptococcal M1 protein constructs a pathological host fibrinogen network // Nature. 2011. Vol. 472, No. 7341. P. 64–68. doi: 10.1038/nature09967
- Thern A., Stenberg L., Dahlback B., Lindahl G. Ig-binding surface proteins of Streptococcus pyogenes also bind human C4b-binding protein (C4BP), a regulatory component of the complement system // J. Immunol. 1995. Vol. 154, No. 1. P. 375–386.
- Berggard K., Johnsson E., Morfeldt E. et al. Binding of human C4BP to the hypervariable region of M protein: a molecular mechanism of phagocytosis resistance in Streptococcus pyogenes // Mol. Microbiol. 2001. Vol. 42, No. 2. P. 539–551. doi: 10.1046/j.1365-2958.2001.02664.x
- Buffalo C.Z., Bahn-Suh A.J., Hirakis S.P. et al. Conserved patterns hidden within group A Streptococcus M protein hypervariability recognize human C4b-binding protein // Nat. Microbiol. 2016. No. 1. P. 16155. doi: 10.1038/nmicrobiol.2016.155
- Sandin C., Carlsson F., Lindahl G. Binding of human plasma proteins to Streptococcus pyogenes M protein determines the location of opsonic and non-opsonic epitopes // Mol. Microbiol. 2006. Vol. 59, No. 1. P. 20–30. doi: 10.1111/j.1365-2958.2005.04913.x
- Akesson P., Schmidt K.H., Cooney J., Björck L. M1 protein and protein H: IgGFc- and albumin-binding streptococcal surface proteins encoded by adjacent genes // Biochem. J. 1994. Vol. 300, No. Pt 3. P. 877–886. doi: 10.1042/bj3000877
- Nilson B.H., Frick I.M., Akesson P. et al. Structure and stability of protein H and the M1 protein from Streptococcus pyogenes. Implications for other surface proteins of grampositive bacteria // Biochemistry. 1995. Vol. 34, No. 41. P. 13688–13698. doi: 10.1021/bi00041a051
- Ermert D., Weckel A., Agarwal V. et al. Binding of complement inhibitor C4b-binding protein to a highly virulent Streptococcus pyogenes M1 strain is mediated by protein H and enhances adhesion to and invasion of endothelial cells // J. Biol. Chem. 2013. Vol. 288, No. 45. P. 32172–32183. doi: 10.1074/jbc.M113.502955
- Berge A., Sjobring U. PAM, a novel plasminogen-binding protein from Streptococcus pyogenes // J. Biol. Chem. 1993. Vol. 268, No. 34. P. 25417–25424.
- Wistedt A.C., Ringdahl U., Muller-Esterl W., Sjobring U. Identification of a plasminogen-binding motif in PAM, a bacterial surface protein // Mol. Microbiol. 1995. Vol. 18, No. 3. P. 569–578. doi: 10.1111/j.1365-2958.1995.mmi_18030569.x
- Rios-Steiner J.L., Schenone M., Mochalkin I. et al. Structure and binding determinants of the recombinant kringle-2 domain of human plasminogen to an internal peptide from a group a Streptococcal surface protein // Mol. Biol. 2001. Vol. 308, No. 4. P. 705–719. doi: 10.1006/jmbi.2001.4646
- Sun H., Ringdahl U., Homeister J.W. et al. Plasminogen is a critical host pathogenicity factor for group A streptococcal infection // Science. 2004. Vol. 305, No. 5688. P. 1283–1286. doi: 10.1126/science.1101245
- Ly D., Taylor J.M., Tsatsaronis J.A. et al. Plasmin(ogen) acquisition by group A Streptococcus protects against C3b-mediated neutrophil killing // J. Innate Immun. 2014. Vol. 6, No. 2. P. 240–250. doi: 10.1159/000353754
- Cole J.N., McArthur J.D., McKay F.C. et al. Trigger for group A streptococcal M1T1 invasive disease // FASEB J. 2006. Vol. 20, No. 10. P. 1745–1747. doi: 10.1096/fj.06-5804fje
- Kronvall G. A surface component in group A, C and G streptococci with non-immune reactivity for immunoglobulin G // J. Immunol. 1973. Vol. 111, No. 5. P. 1401–1406.
- Lindahl G., Akerstrom B. Receptor for IgA in group A streptococci: cloning of the gene and characterization of the protein expressed in Escherichia coli // Mol. Microbiol. 1989. Vol. 3, No. 2. P. 239–247. doi: 10.1111/j.1365-2958.1989.tb01813.x
- Lindahl G., Stenberg L. Binding of IgA and/or IgG is a common property among clinical isolates of group A streptococci // Epidemiol. Infect. 1990. Vol. 105, No. 1. P. 87–93. doi: 10.1017/s0950268800047683
- Johnsson E., Andersson G., Lindahl G., Heden L.O. Identification of the IgA-binding region in streptococcal protein Arp // J. Immunol. 1994. Vol. 153, No. 8. P. 3557–3564.
- Bessen D.E. Localization of immunoglobulin A-binding sites within M or M-like proteins of group A streptococci // Infect. Immun. 1994. Vol. 62, No. 5. P. 1968–1974. doi: 10.1128/iai.62.5.1968-1974.1994
- Lindahl G. An Odyssey in word of M proteins. In: Perspectives on receptins and resistance. Ed. by G. Kronvall. Stockholm, 2013. P. 13–23.
- Horton R.E., Vidarsson G. Antibodies and their receptors: different potential roles in mucosal defense // Front. Immunol. 2013. Vol. 4. P. 200. doi: 10.3389/fimmu.2013.00200
- Cedervall T., Akesson P., Stenberg L. et al. Allosteric and temperature effects on the plasma protein binding by streptococcal M protein family members // Scand. J. Immunol. 1995. Vol. 42, No. 4. P. 433–441. doi: 10.1111/j.1365-3083.1995.tb03677.x
- Grov A., Myklestd B., Oeding F. Immunochemical studies on antigen preparations from Staphylococcus aureus. I. Isolation and chemical characterization of antigen A // Acta Pathol. Microbiol. Scand. 1964. Vol. 61. P. 588–596. doi: 10.1111/apm.1964.61.4.588
- Forsgren A., Sjoquist J. “Protein A” from S. aureus. I. Pseudoimmune reaction with human gamma-globulin // J. Immunol. 1966. Vol. 97, No. 6. P. 822–827.
- Myhre E.B., Kronvall G. Immunoglobulin binding to group A, C and G streptococci. In: Pathogenic streptococci. Ed. by M.T. Parker. Reedbooks Ltd, England, 1979. P. 76–78.
- Myhre E.B., Kronvall G. Heterogeneity of nonimmune immunoglobulin Fc reactivity among gram-positive cocci. Description of three major types of receptors for human immunoglobulin G // Infect. Immun. 1977. Vol. 17, No. 3. P. 475–482. doi: 10.1128/IAI.17.3.475-482.1977
- Christensen P., Sramec J., Zatterstrom U. Binding of aggregated IgG in the presence of fresh serum: strong association with type 12 group A streptococci // Acta Pathol. Microbiol. Scand. B. 1981. Vol. 89, No. 2. P. 87–91. doi: 10.1111/j.1699-0463.1981.tb00158_89b.x
- Schalen C., Kurl D.N., Christensen P. Independent binding of native and aggregated IgG in group A streptococci // APMIS. 1986. Vol. 94, No. 5. P. 333–338. doi: 10.1111/j.1699-0463.1986.tb03062.x
- Burova L., Pigarevsky P., Duplik N. et al. Immune complex binding Streptococcus pyogenes type M12/emm12 in experimental glomerulonephritis // J. Med. Microbiol. 2013. Vol. 62(Pt 9). P. 1272–1280. doi: 10.1099/jmm.0.059196-0
- Burova L., Therne A., Pigarevsky P. et al. Role of group A streptococcal IgG-binding proteins in triggering experimental glomerulonephritis in the rabbit // APMIS. 2003. Vol. 111, No. 10. P. 955–962. doi: 10.1034/j.1600-0463.2003.1111007.x
- Burova L.A., Nagornev V.A., Pigarevsky P.V. et al. Myocardial tissue damage in rabbits injected with group A streptococci, types M1 and M22. Role of bacterial immunoglobulin G-binding surface proteins // APMIS. 2005. Vol. 113, No. 1. P. 21–30. doi: 10.1111/j.1600-0463.2005.apm1130104.x
- Heath D.G., Cleary P.P. Fc-receptor and M protein genes of group A streptococci are products of gene duplication // Proc. Natl. Acad. Sci. USA. 1989. Vol. 86, No. 12. P. 4741–4745. doi: 10.1073/pnas.86.12.4741
- Stenberg L., O’Toole P., Lindahl G. Many group A streptococcal strains express two different immunoglobulin-binding proteins, encoded by closely linked genes: characterization of the proteins expressed by four strains of different M-type // Mol. Microbiol. 1992. Vol. 6, No. 9. P. 1185–1194. doi: 10.1111/j.1365-2958.1992.tb01557.x
- Hollingshead S.K., Arnold J., Readdy T.L., Bessen D.E. Molecular evolution of a multigene family in group A Streptococci // Mol. Biol. Evol. 1994. Vol. 11, No. 2. P. 208–219. doi: 10.1093/oxfordjournals.molbev.a040103
- Schroder A.K., Nardella F.A., Mannik M. et al. Identification of the site on IgG Fc for interaction with streptococci of groups A, C end G // Immunology. 1987. Vol. 62, No. 4. P. 523–527.
- Christensen P., Oxelius V.-A. A reaction between some streptococci and IgA myeloma proteins // Acta Pathol. Microbiol. Scand. C Immunol. 1975. Vol. 83C, No. 3. P. 184–188. doi: 10.1111/j.1699-0463.1975.tb01624.x
- Kronvall G., Björck L., Myhre E.B., Wannamaker L.W. Binding of aggregated β2-microglobulin, IgG, IgA and fibrinogen to group A, C and G streptococci with special reference to streptococcal M protein. // Pathogenic streptococci. Ed. by M.T. Parker. Reedbooks Ltd, England, 1979. P. 74–76.
- Lebrun L., Pillot J., Grangeot-Keros L. Significance of anti-IgG antibodies obtained by immunization of rabbits with same streptococcal strains // Ann. Immunol. (Paris). 1982. Vol. 133C, No. 1. P. 45–56. doi: 10.1016/0769-2625(82)90005-8
- Grubb R., Burova L., Hultguist R. et al. Anti-IgG-allotypic specifities of spontaneously occurring anti-immunoglobulins In: Antibodies-protective, destructive and regulatory role. F. Milgrome, C. Abeyounis, B. Albini (Eds.). Karger, Basel, 1985. P. 224–233.
- Burova L.A., Christensen P., Grubb R. et al. Anti-immunoglobulins in experimental streptococcal immunization: relation to bacterial growth conditions and Fc-receptors // Acta Pathol. Microbiol. Immunol. Scand. C. 1985. Vol. 93, No. 1. P. 19–23. doi: 10.1111/j.1699-0463.1985.tb02916.x
- Barabas A.Z., Cole C.D., Lafreniere R., Weir D.M. Immunopathological events initiated and maintained by pathogenic IgG autoantibodies in an experimental autoimmune kidney disease // Autoimmunity. 2012. Vol. 45, No. 7. P. 495–509. doi: 10.3109/08916934.2012.702812
- Rodriguez-Iturbe B. Autoimmunity in acute poststreptococcal GN: a neglected aspect of the disease // JASN. 2021. Vol. 32, No. 3. P. 534–542. doi: 10.1681/ASN.2020081228
- Rodriguez-Iturbe B., Haas M. Post-Streptococcal Glomerulonephritis // Streptococcus pyogenes: Basic Biology to Clinical Manifestations. J.J. Ferretti, D.L. Stevens, V.A. Fischetti (Eds.) [Internet]. Oklahoma City: University of Oklahoma, Health Sciences Center, 2016.
- Barnham M., Thornton T.J., Lange K. Nephritis caused by Streptococcus zooepidemicus (Lancefield group C) // Lancet. 1983. Vol. 1, No. 8331. P. 945–948. doi: 10.1016/s0140-6736(83)92078-0
- Balter S., Benin A., Pinto S.W. et al. Epidemic nephritis in Nova Serrana, Brazil // Lancet. 2000. Vol. 355, No. 9217. P. 1776–1780. doi: 10.1016/s0140-6736(00)02265-0
- Taylor S.N., Sanders C.V. Unusual manifestations of invasive pneumococcal infection // Am. J. Med. 1999. Vol. 107, No. 1A. P. 12S–27S. doi: 10.1016/s0002-9343(99)00103-5
- Phillips J., Palmer A., Baliga R. Glomerulonephritis associated with acute pneumococcal pneumonia: a case report // Pediatr. Nephrol. 2005. Vol. 20, No. 10. P. 1494–1495. doi: 10.1007/s00467-005-1994-6
- Almroth G., Lindell A., Aselius H. et al. Acute glomerulonephritis associated with Streptococcus pyogenes with concomitant spread of Streptococcus constellatus in four rural families // Ups. J. Med. Sci. 2005. Vol. 110, No. 3. P. 217–231. doi: 10.3109/2000-1967-067
- Maharaj S., Seegobin K., Chrzanowski S., Chang S. Acute glomerulonephritis secondary to Streptococcus anginosus // BMJ Case Rep. 2018. Vol. 2018. P. bcr2017223314. doi: 10.1136/bcr-2017-223314
- Nordstrand A., Norgren M., Ferretti J.J., Holm S.E. Streptokinase as a mediator of acute post-streptococcal glomerulonephritis in an experimental mouse model // Infect. Immun. 1998. Vol. 66, No. 1. P. 315–321. doi: 10.1128/IAI.66.1.315-321.1998
- Nordstrand A., McShan W.M., Ferretti J.J. et al. Allele substitution of the streptokinase gene reduces the nephritogenic capacity of group A streptococcal strain NZ131 // Infect. Immun. 2000. Vol. 68, No. 3. P. 1019–1025. doi: 10.1128/iai.68.3.1019-1025.2000
- Yoshizawa N., Yamakami K., Fujino M. et al. Nephritis-associated plasmin receptor and acute poststreptococcal glomerulonephritis: characterization of the antigen and associated immune response // J. Am. Soc. Nephrol. 2004. Vol. 15, No. 7. P. 1785–1793. doi: 10.1097/01.asn.0000130624.94920.6b
- Luo Y.H., Kuo C.F., Huang K.J. et al. Streptococcal pyrogenic exotoxin B antibodies in a mouse model of glomerulonephritis // Kidney Int. 2007. Vol. 72, No. 6. P. 716–724. doi: 10.1038/sj.ki.5002407
- Honda-Ogawa M., Ogawa T., Terao Y. et al. Cysteine proteinase from Streptococcus pyogenes enables evasion of innate immunity via degradation of complement factors // J. Biol. Chem. 2013. Vol. 288, No. 22. P. 15854–15864. doi: 10.1074/jbc.M113.469106
- Rodriguez-Iturbe B., Musser J.M. The current state of poststreptococcal glomerulonephritis // J. Am. Soc. Nephrol. 2008. Vol. 19, No. 10. P. 1855–1864. doi: 10.1681/ASN.2008010092
- Nordstrand A., Norgren M., Holm S.E. An experimental model for acute glomerulonephritis in mice // APMIS. 1996. Vol. 104, No. 11. P. 805–816. doi: 10.1111/j.1699-0463.1996.tb04946.x
- Бурова Л.А., Гаврилова Е.А., Пигаревский П.В., Тотолян Артем А. Роль стрептокиназы в моделировании постстрептококкового гломерулонефрита // Инфекция и иммунитет. 2021. Т. 11, № 5. С. 853–864. doi: 10.15789/2220-7619-ARO-1594
- Oda T., Yoshizawa N., Yamakami K. et al. Localization of nephritis-associated plasmin receptor in acute poststreptococcal glomerulonephritis // Hum. Pathol. 2010. Vol. 41, No. 9. P. 1276–1285. doi: 10.1016/j.humpath.2010.02.006
- McIntosh R.M., Allen J.E., Rabideua D. et al. The role of interaction between streptococcal products and immunoglobulins in the pathogenesis of glomerular and vascular injure // Streptococcal diseases and the immune response. S.E. Read, J.B. Zabriskie (Eds.). New York, London Academic Press, 1980. P. 585–596.
- McIntosh R.M., Kaufman D.B., McIntosh J.R., Griswold W.R. Glomerular lesions produced in rabbits by autologous serum and autologous IgG modified by treated with a culture of a-hemolytic streptococcus // J. Med. Microbiol. 1972. Vol. 5, No. 1. P. 1–7. doi: 10.1099/00222615-5-1-1
- Yang R., Otte M.A., Hellmark T. et al. Successful treatment of experimental glomerulonephritis with IdeS and EndoS, IgG-degrading streptococcal enzymes // Nephrol. Dial. Transplant. 2010. Vol. 25, No. 8. P. 2479–2486. doi: 10.1093/ndt/gfq115
- Segelmark M., Björck L. Streptococcal enzymes as precision tools against pathogenic IgG autoantibodies in small vessel vasculitis // Front. Immunol. 2019. No. 10. P. 2165. doi: 10.3389/fimmu.2019.02165
- Collin M., Olsén A. Effect of SpeB and EndoS from Streptococcus pyogenes on human immunoglobulins // Infect. Immun. 2001. Vol. 69, No. 11. P. 7187–7189. doi: 10.1128/IAI.69.11.7187-7189.2001
- Collin M., Olsén A. EndoS, a novel secreted protein from Streptococcus pyogenes with endoglycosidase activity on human IgG // EMBO J. 2001. Vol. 20, No. 12. P. 3046–3055. doi: 10.1093/emboj/20.12.3046
- Burova L.A., Schalen C., Koroleva I.V., Svensson M.-L. Role of group A streptococcal IgG Fc-receptor in induction of anti-IgG by immunization in rabbit // FEMS Microbiol. Immunol. 1989. Vol. 1, No. 8–9. P. 443–448. doi: 10.1111/j.1574-6968.1989.tb02435.x
- Burova L.A., Koroleva I.V., Ogurtzov R.P. et al. Role of streptococcal IgG Fc-receptor in tissue deposition of IgG in rabbits immunized with Streptococcus pyogenes // APMIS. 1992. Vol. 100, No. 6. P. 567–574. doi: 10.1111/j.1699-0463.1992.tb00912.x
- Burova L.A., Nagornev V.A., Pigarevsky P.V. et al. Triggering of renal tissue damage in the rabbit by IgGFc-receptor positive group A streptococci // APMIS. 1998. Vol. 106, No. 2. P. 277–287. doi: 10.1111/j.1699-0463.1998.tb01347.x
- Burova L.A., Pigarevsky P.V., Seliverstova V.G. et al. Experimental poststreptococcal glomerulonephritis elicited by IgG Fc-binding M family proteins and blocked by IgG Fc-fragment // APMIS. 2012. Vol. 120, No. 3. P. 221–230. doi: 10.1111/j.1600-0463.2011.02826.x
- Burova L.A., Gavrilova E.A., Gupalova T.V. et al. Inhibition of experimental post-streptococcal glomerulonephritis in rabbits by IgG Fc fragments // Streptococci - New Insights into an Old Enemy. Ed. by K.S.Sriprakash. Published by Elsevier, ICS. 2006. Vol. 1289. P. 359–362.
- Gomes-Guerrero C., Duque N., Casado M.T. et al. Administration of IgGFc-fragments prevents glomerular injury in experimental immune complex nephritis // J. Immunol. 2000. Vol. 164, No. 4. P. 2092–2101. doi: 10.4049/jimmunol.164.4.2092
- Cunningham M.W. Molecular mimicry, autoimmunity, and infection: the cross-reactive antigens of group A Streptococci and their sequelae // Microbiol. Spectr. 2019. Vol. 7, No. 4. P. 10.1128/microbiolspec.GPP3-0045-2018. doi: 10.1128/microbiolspec.GPP3-0045-2018
- Rafeek R.A.M., Sikder S., Hamlin A.S. et al. Requirements for a robust animal model to investigate the disease mechanism of autoimmune complications associated with ARF/RHD // Front. Cardiovasc. Med. 2021. Vol. 8. P. 675339. doi: 10.3389/fcvm.2021.675339
- Rafeek R.A.M., Hamlin A.S., Andronicos N.M. et al. Characterization of an experimental model to determine streptococcal M protein-induced autoimmune cardiac and neurobehavioral abnormalities // Immunol. Cell. Biol. 2022. Vol. 100, No. 8. P. 653–666. doi: 10.1111/imcb.12571
- Burova L.A., Nagornev V.A., Pigarevsky P.V. et al. Induction of myocarditis in rabbits injected with group A streptococci // Indian. J. Med. Res. 2004. Vol. 119 Suppl. P. 183–185.
- Li Y., Heuser J.S., Kosanke S.D. et al. Cryptic epitope identified in rat and human cardiac myosin S2 region induces myocarditis in the Lewis rat // J. Immunol. 2004. Vol. 172, No. 5. P. 3225–3234. doi: 10.4049/jimmunol.172.5.3225
- Gorton D., Sikder S., Williams N.L. et al. Repeat exposure to group A streptococcal M protein exacerbates cardiac damage in a rat model of rheumatic heart disease // Autoimmunity. 2016. Vol. 49, No. 8. P. 563–570. doi: 10.1080/08916934.2016.1217999
- Wyatt R.J., Julian B.A. IgA Nephropathy // N. Engl. J. Med. 2013. Vol. 368, No. 25. P. 2402–2414. doi: 10.1056/NEJMra1206793
- Moriyama T., Tanaka K., Iwasaki C. et al. Prognosis in IgA nephropathy: 30-year analysis of 1012 patients at a single center in Japan // PLoS One. 2014. Vol. 9, No. 3. P. e91756. doi: 10.1371/journal.pone.0091756
- Maixnerova D., Reily C., Bian Q. et al. Markers for the progression of IgA nephropathy // J. Nephrol. 2016. Vol. 29, No. 4. P. 535–541. doi: 10.1007/s40620-016-0299-0
- Suzuki H., Kiryluk K., Novak J. et al. The pathophysiology of IgA nephropathy // J. Am. Soc. Nephrol. 2011. Vol. 22, No. 10. P. 1795–1803. doi: 10.1681/ASN.2011050464
- Boyd J.K., Cheung C.K., Molyneux K. et al. An update on the pathogenesis and treatment of IgA nephropathy // Kidney Int. 2012. Vol. 81, No. 9. P. 833–843. doi: 10.1038/ki.2011.501
- Tomana M., Matousovic K., Julian B.A. et al. Galactose-deficient IgA1 in sera of IgA nephropathy patients is present in complexes with IgG // Kidney Int. 1997. Vol. 52, No. 2. P. 509–516. doi: 10.1038/ki.1997.361
- Suzuki H., Fan R., Zhang Z. et al. Aberrantly glycosylated IgA1 in IgA nephropathy patients is recognized by IgG antibodies with restricted heterogeneity // J. Clin. Invest. 2009. Vol. 119, No. 6. P. 1668–1677. doi: 10.1172/JCI38468
- Coppo R. The intestine-renal connection in IgA nephropathy // Nephrol. Dial. Transplant. 2015. Vol. 30, No. 3. P. 360–366. doi: 10.1093/ndt/gfu343
- Tanaka M., Seki G., Someya T. et al. Aberrantly glycosylated IgA1 as a factor in the pathogenesis of IgA nephropathy // Clin. Dev. Immunol. 2011. Vol. 2011. P. 470803. doi: 10.1155/2011/470803
- Piccolo M., De Angelis M., Lauriero G. et al. Salivary microbiota associated with immunoglobulin A nephropathy // Microb. Ecol. 2015. Vol. 70, No. 2. P. 557–565. doi: 10.1007/s00248-015-0592-9
- Meng H., Ohtake H., Ishida A. et al. IgA production and tonsillar focal infection in IgA nephropathy // J. Clin. Exp. Hematop. 2012. Vol. 52, No. 3. P. 161–170. doi: 10.3960/jslrt.52.161
- Nakata J., Suzuki Y., Suzuki H. et al. Changes in nephritogenic serum galactose-deficient IgA1 in IgA nephropathy following tonsillectomy and steroid therapy // PloS One. 2014. Vol. 9, No. 2. P. e89707. doi: 10.1371/journal.pone.0089707
- Schmitt R., Carlsson F., Mörgelin M. et al. Tissue deposits of IgA-binding streptococcal M proteins in IgA nephropathy and Henoch-Schonlein purpura // Am. J. Pathol. 2010. Vol. 176, No. 2. P. 608–618. doi: 10.2353/ajpath.2010.090428
- Schmitt R., Ståhl A., Olin A. et al. The combined role of galactose-deficient IgA1 and Streptococcal IgA-Binding M Protein in Inducing IL-6 and C3 secretion from human mesangial cells: implications for IgA nephropathy // J. Immunol. 2014. Vol. 193, No. 1. P. 317–326. doi: 10.4049/jimmunol.1302249
- Бурова Л.А., Пигаревский П.В., Снегова В.А. и др. Нефритогенность IgA-связывающих Streptococcus pyogenes. Моделирование IgA-гломерулонефрита // Медицинская иммунология. 2016. Т. 18, № 3. С. 221–230. doi: 10.15789/1563-0625-2016-3-221-230
- Hashimoto A., Suzuki Y., Suzuki H. et al. Determination of severity of murine IgA nephropathy by glomerular complement activation by aberrantly glycosylated IgA and immune complexes // Am. J. Pathol. 2012. Vol. 181, No. 4. P. 1338–1347. doi: 10.1016/j.ajpath.2012.06.038
- Kovalenko P., Fujinaka H., Yoshida Y. et al. Fc receptor-mediated accumulation of macrophages in crescentic glomerulonephritis induced by antiglomerular basement membrane antibody administration in WKY rats // Int. Immunol. 2004. Vol. 16, No. 5. P. 625–634. doi: 10.1093/intimm/dxh058
- Tian J., Wang Y., Zhou X. et al. Rapamycin slows IgA nephropathy progression in the rat // Am. J. Nephrol. 2014. Vol. 39, No. 3. P. 218–229. doi: 10.1159/000358844
- Jessen R.H., Emancipator S.N., Jacobs G.H., Nedrud J.G. Experimental IgA-IgG nephropathy induced by a viral respiratory pathogen. Dependence on antigen form and immune status // Lab. Invest. 1992. Vol. 67, No. 3. P. 379–386.
- Okazaki K., Suzuki Y., Otsuji M. et al. Development of a model of early-onset IgA nephropathy // J. Am. Soc. Nephrol. 2012. Vol. 23, No. 8. P. 1364–1374. doi: 10.1681/ASN.2011121160
- Suzuki H., Suzuki Y., Novak J., Tomino Y. Development of animal models of human IgA nephropathy // Drug. Discov. Today Dis. Models. 2014. No. 11. P. 5–11. doi: 10.1016/j.ddmod.2014.07.002
- Berthelot L., Monteiro R.C. Formation of IgA deposits in Berger’s disease: what we learned from animal models // Biol. Aujourdhui. 2013. Vol. 207, No. 4. P. 241–247. (In French) doi: 10.1051/jbio/2013022
- Berthelot L., Papista C., Maciel T.T. et al. Transglutaminase is essential for IgA nephropathy development acting through IgA receptors // J. Exp. Med. 2012. Vol. 209, No. 4. P. 793–806. doi: 10.1084/jem.20112005
- Barratt J., Smith A.C., Feehally J. The pathogenic role of IgA1 O-linked glycosylation in the pathogenesis of IgA nephropathy // Nephrology (Carlton). 2007. Vol. 12, No. 3. P. 275–284. doi: 10.1111/j.1440-1797.2007.00797.x
- Liu H., Peng Y., Liu F. et al. Expression of IgA class switching gene in tonsillar mononuclear cells in patients with IgA nephropathy // Inflamm. Res. 2011. Vol. 60, No. 9. P. 869–878. doi: 10.1007/s00011-011-0347-0
Дополнительные файлы
