Pathogenetic and diagnostic features of osteoporosis in men
- 作者: Kholmanskikh A.S.1, Lesnyak O.M.1,2
-
隶属关系:
- North-Western State Medical University named after I.I. Mechnikov
- Nasonova Research Institute of Rheumatology
- 期: 卷 29, 编号 4 (2025)
- 页面: 21-32
- 栏目: Review
- URL: https://medbiosci.ru/RFD/article/view/381861
- DOI: https://doi.org/10.17816/RFD697563
- EDN: https://elibrary.ru/FNOVMD
- ID: 381861
如何引用文章
详细
Osteoporosis has traditionally been perceived by clinicians as a disease predominantly affecting women. However, contemporary epidemiological data indicate that its prevalence among men is substantially underestimated, particularly in the Russian Federation. Epidemiological studies show that approximately one in five men aged 50 years and older will sustain at least one osteoporotic fracture during their remaining lifetime. The etiology of osteoporosis in men is multifactorial, and a key role is played by genetic factors, reduced testosterone levels, and various comorbid conditions. Notably, the proportion of secondary osteoporosis attributable to underlying diseases or medication exposure ranges from 50% to 80%. Nevertheless, in the Russian population, secondary osteoporosis has been diagnosed in only 17% of men, suggesting insufficient or ineffective evaluation of male patients with osteoporosis for secondary causes. The diagnosis of osteoporosis in men, as in women, is based on bone mineral density assessment by densitometry and fracture risk estimation using the FRAX (Fracture Risk Assessment Tool) calculator, with universal application of diagnostic criteria originally developed for female populations. Despite the widespread adoption of this approach, its clinical validity in men older than 50 years has not been convincingly established.
This review substantiates the need to implement a dedicated diagnostic algorithm for men, incorporating systematic evaluation for secondary causes of osteoporosis, thereby enabling personalized and etiologically targeted therapy to improve clinical outcomes.
作者简介
Anna Kholmanskikh
North-Western State Medical University named after I.I. Mechnikov
编辑信件的主要联系方式.
Email: A.S.Kholmanskikh@gmail.com
ORCID iD: 0009-0006-8944-8806
SPIN 代码: 7248-6972
俄罗斯联邦, Saint Petersburg
Olga Lesnyak
North-Western State Medical University named after I.I. Mechnikov; Nasonova Research Institute of Rheumatology
Email: olga.m.lesnyak@yandex.ru
ORCID iD: 0000-0002-0143-0614
SPIN 代码: 6432-4188
MD, Dr. Sci. (Medicine), Professor
俄罗斯联邦, Saint Petersburg; Saint Petersburg参考
- Khan AA, Slart RHJA, Ali DS, et al. Osteoporotic fractures: diagnosis, evaluation, and significance from the International working group on DXA best practices. Mayo Clin Proc. 2024;99(7):1127–1141. doi: 10.1016/j.mayocp.2024.01.011 EDN: EEKUBZ
- Son HJ, Park SJ, Kim JK, Park JS. Mortality risk after the first occurrence of osteoporotic vertebral compression fractures in the general population: a nationwide cohort study. PLoS One. 2023;18(9):e0291561. doi: 10.1371/journal.pone.029156 EDN: FXJCIE
- Salari N, Darvishi N, Bartina Y, et al. Global prevalence of osteoporosis among the world older adults: a comprehensive systematic review and meta-analysis. J Orthop Surg Res. 2021;16(1):669. doi: 10.1186/s13018-021-02821-8 EDN: FHYRST
- Mikhailov EE, Benevolskaya LI. Guide to osteoporosis. Moscow: BINOM; 2003. 524 p. (In Russ.)
- Ballane G, Cauley JA, Luckey MM, El-Hajj Fuleihan G. Worldwide prevalence and incidence of osteoporotic vertebral fractures. Osteoporos Int. 2017;28(5):1531–1542. doi: 10.1007/s00198-017-3909-3 EDN: YWMSHV
- Evstigneeva LP, Piven AI. Epidemiology of osteoporotic vertebral fractures based on X-ray morphometric analysis among a population sample of Yekaterinburg residents aged 50 years and older. Osteoporosis and Bone Diseases. 2001;(2):2–6. (In Russ.)
- Gladkova EN, Khodyrev VN, Lesnyak OM. An epidemiological survey of osteoporotic fractures in older residents from the Middle Urals. Rheumatology Science and Practice. 2014;52(6):643—649. doi: 10.14412/1995-4484-2014-643-649 EDN: TCFTPT
- Prior JC, Langsetmo L, Lentle BC, et al. Ten-year incident osteoporosis-related fractures in the population-based Canadian multicentre osteoporosis study - comparing site and age-specific risks in women and men. Bone. 2015;71:237–243. doi: 10.1016/j.bone.2014.10.026
- Rinonapoli G, Ruggiero C, Meccariello L, et al. Osteoporosis in men: a review of an underestimated bone condition. Int J Mol Sci. 2021;22(4):2105. doi: 10.3390/ijms22042105 EDN: BBDOHM
- Holcombe SA, Derstine BA. Rib cortical bone thickness variation in adults by age and sex. J Anat. 2022;241(6):1344–1356. doi: 10.1111/joa.13751 EDN: DWUVEN
- Khosla S, Amin S, Orwoll E. Osteoporosis in men. Endocr Rev. 2008;29(4):441–464. doi: 10.1210/er.2008-0002 EDN: YVRSUT
- Kanis JA, Odén A, McCloskey EV, et al. A systematic review of hip fracture incidence and probability of fracture worldwide. Osteoporos Int. 2012;23(9):2239–2256. doi: 10.1007/s00198-012-1964-3 EDN: RKFGMJ
- Cooley H, Jones G. A population-based study of fracture incidence in southern Tasmania: lifetime fracture risk and evidence for geographic variations within the same country. Osteoporos Int. 2001;12(2):124–130. doi: 10.1007/s001980170144 EDN: ATAQYZ
- Merrill RM, Weed DL, Feuer EJ. The lifetime risk of developing prostate cancer in white and black men. Cancer Epidemiol Biomarkers Prev. 1997;6(10):763–768.
- Bliuc D, Nguyen ND, Milch VE, et al. Mortality risk associated with low-trauma osteoporotic fracture and subsequent fracture in men and women. JAMA. 2009;301(5):513–521. doi: 10.1001/jama.2009.50
- Glinkowski W, Narloch J, Krasuski K, Śliwczyński A. The increase of osteoporotic hip fractures and associated one-year mortality in Poland: 2008-2015. J Clin Med. 2019;8(9):1487. doi: 10.3390/jcm8091487
- Czerwinski E, Kanis JA, Trybulec B, et al. The incidence and risk of hip fracture in Poland. Osteoporos Int. 2009;20(8):1363–1367. doi: 10.1007/s00198-008-0787-8 EDN: EFATND
- Kannus P, Niemi S, Parkkari J, Sievänen H. Continuously declining incidence of hip fracture in Finland: analysis of nationwide database in 1970-2016. Arch Gerontol Geriatr. 2018;77:64–67. doi: 10.1016/j.archger.2018.04.008
- Grigorie D, Sucaliuc A, Johansson H, et al. Incidence of hip fracture in Romania and the development of a Romanian FRAX model. Calcif Tissue Int. 2013;92(5):429–436. doi: 10.1007/s00223-013-9697-7 EDN: SPAJDJ
- Jürisson M, Vorobjov S, Kallikorm R, et al. The incidence of hip fractures in Estonia, 2005-2012. Osteoporos Int. 2015;26(1):77–84. doi: 10.1007/s00198-014-2820-4 EDN: TCFQZV
- Lesnyak O, Ershova O, Belova K, et al. Epidemiology of fracture in the Russian Federation and the development of a FRAX model. Arch Osteoporos. 2012;7(1-2):67–73. doi: 10.1007/s11657-012-0082-3 EDN: SPYIBD
- Vilaca T, Eastell R, Schini M. Osteoporosis in men. Lancet Diabetes Endocrinol. 2022;10(4):273–283. doi: 10.1016/s2213-8587(22)00012-2 EDN: RDXSHZ
- Bandeira L, Silva BC, Bilezikian JP. Male osteoporosis. Arch Endocrinol Metab. 2022;66(5):739–747. doi: 10.20945/2359-3997000000563 EDN: JIDNEM
- Seeman E. Periosteal bone formation-a neglected determinant of bone strength. N Engl J Med. 2003;349(4):320–323. doi: 10.1056/NEJMp038101 EDN: GNFMET
- Khosla S, Riggs BL, Atkinson EJ, et al. Effects of sex and age on bone microstructure at the ultradistal radius: a population-based noninvasive in vivo assessment. J Bone Miner Res. 2006;21(1):124–131. doi: 10.1359/JBMR.050916
- Proctor DN, Melton LJ, Khosla S, et al. Relative influence of physical activity, muscle mass and strength on bone density. Osteoporos Int. 2000;11(11):944–952. doi: 10.1007/s001980070033 EDN: AVGSYZ
- Sutter T, Toumi H, Valery A, et al. Relationships between muscle mass, strength and regional bone mineral density in young men. PLoS One. 2019;14(3):e0213681. doi: 10.1371/journal.pone.0213681
- Chen F, Su Q, Tu Y, et al. Maximal muscle strength and body composition are associated with bone mineral density in chinese adult males. Medicine (Baltimore). 2020;99(6):e19050. doi: 10.1097/MD.0000000000019050 EDN: YQJOAG
- Munari EV, Amer M, Amodeo A, et al. The complications of male hypogonadism: is it just a matter of low testosterone? Front Endocrinol (Lausanne). 2023;14:1201313. doi: 10.3389/fendo.2023.1201313 EDN: RCALIA
- Shigehara K, Izumi K, Kadono Y, Mizokami A. Testosterone and bone health in men: a narrative review. J Clin Med. 2021;10(3):530. doi: 10.3390/jcm10030530 EDN: UGYRBV
- Finkelstein JS, Lee H, Leder BZ, et al. Gonadal steroid-dependent effects on bone turnover and bone mineral density in men. J Clin Invest. 2016;126(3):1114–1125. doi: 10.1172/JCI84137
- Feldman HA, Longcope C, Derby CA, et al. Age trends in the level of serum testosterone and other hormones in middle-aged men: longitudinal results from the Massachusetts male aging study. J Clin Endocrinol Metab. 2002;87(2):589–598. doi: 10.1210/jcem.87.2.8201
- Lassemillante AC, Doi SA, Hooper JD, et al. Prevalence of osteoporosis in prostate cancer survivors: a meta-analysis. Endocrine. 2014;45(3):370–381. doi: 10.1007/s12020-013-0083-z EDN: CVJQZJ
- Szulc P, Claustrat B, Marchand F, Delmas PD. Increased risk of falls and increased bone resorption in elderly men with partial androgen deficiency: the MINOS study. J Clin Endocrinol Metab. 2003;88(11):5240–5247. doi: 10.1210/jc.2003-030200
- Zha XY, Hu Y, Pang XN, et al. Sex hormone-binding globulin (SHBG) as an independent determinant of bone mineral density (BMD) among Chinese middle-aged and elderly men. Endocrine. 2014;47(2):590–597. doi: 10.1007/s12020-013-0155-0 EDN: GZKJXV
- Yang F, Yang D, Zhou Y, Wu J. Associations of sex hormone-binding globulin with bone mineral density among US adults, NHANES 2013-2016. Int J Gen Med. 2021;14:7707–7717. doi: 10.2147/IJGM.S329992 EDN: FLHQHY
- Vanderschueren D, Vandenput L, Boonen S, et al. Androgens and bone. Endocr Rev. 2004;25(3):389–425. doi: 10.1210/er.2003-0003
- Mohamad NV, Soelaiman IN, Chin KY. A concise review of testosterone and bone health. Clin Interv Aging. 2016;11:1317–1324. doi: 10.2147/CIA.S115472
- Kasperk C, Helmboldt A, Börcsök I, et al. Skeletal site-dependent expression of the androgen receptor in human osteoblastic cell populations. Calcif Tissue Int. 1997;61(6):464–473. doi: 10.1007/s002239900369 EDN: QAPVHE
- Emmanuelle NE, Marie-Cécile V, Florence T, et al. Critical role of estrogens on bone homeostasis in both male and female: from physiology to medical implications. Int J Mol Sci. 2021;22(4):1568. doi: 10.3390/ijms22041568 EDN: GRCCQK
- Cooke PS, Nanjappa MK, Ko C, et al. Estrogens in male physiology. Physiol Rev. 2017;97(3):995–1043. doi: 10.1152/physrev.00018.2016 EDN: YHBMSF
- Iravani M, Lagerquist M, Ohlsson C, Sävendahl L. Regulation of bone growth via ligand-specific activation of estrogen receptor alpha. J Endocrinol. 2017;232(3):403–410. doi: 10.1530/JOE-16-0263
- Falahati-Nini A, Riggs BL, Atkinson EJ, et al. Relative contributions of testosterone and estrogen in regulating bone resorption and formation in normal elderly men. J Clin Invest. 2000;106(12):1553–1560. doi: 10.1172/JCI10942
- Sanyal A, Hoey KA, Mödder UI, et al. Regulation of bone turnover by sex steroids in men. J Bone Miner Res. 2008;23(5):705–714. doi: 10.1359/jbmr.071212
- Rochira V, Antonio L, Vanderschueren D. EAA clinical guideline on management of bone health in the andrological outpatient clinic. Andrology. 2018;6(2):272–285. doi: 10.1111/andr.12470 EDN: YGRBPN
- Rochira V. Late-onset hypogonadism: bone health. Andrology. 2020;8(6):1539–1550. doi: 10.1111/andr.12827 EDN: OSTWMS
- Rizzo AS, Borrell JA, Furtado TP, et al. MP35-10 Prevalence of hypogonadism and testosterone screening practices in men with osteopenia and osteoporosis: a retrospective cohort study. J Urol. 2025;213(5S):e1221. doi: 10.1097/01.JU.0001110148.55973.cd.10
- Permpongkosol S, Khupulsup K, Leelaphiwat S, et al. Effects of 8-year treatment of long-acting testosterone undecanoate on metabolic parameters, urinary symptoms, bone mineral density, and sexual function in men with late-onset hypogonadism. J Sex Med. 2016;13(8):1199–1211. doi: 10.1016/j.jsxm.2016.06.003
- Agarwal PK, Singh P, Chowdhury S, et al. A study to evaluate the prevalence of hypogonadism in Indian males with Type-2 diabetes mellitus. Indian J Endocrinol Metab. 2017;21(1):64–70. doi: 10.4103/2230-8210.196008
- Fink HA, Ewing SK, Ensrud KE, et al. Association of testosterone and estradiol deficiency with osteoporosis and rapid bone loss in older men. J Clin Endocrinol Metab. 2006;91(10):3908–3915. doi: 10.1210/jc.2006-0173
- Greendale GA, Edelstein S, Barrett-Connor E. Endogenous sex steroids and bone mineral density in older women and men: the Rancho Bernardo study. J Bone Miner Res. 1997;12(11):1833–1843. doi: 10.1359/jbmr.1997.12.11.1833
- Mellström D, Johnell O, Ljunggren O, et al. Free testosterone is an independent predictor of BMD and prevalent fractures in elderly men: MrOS Sweden. J Bone Miner Res. 2006;21(4):529–535. doi: 10.1359/jbmr.060110
- LeBlanc ES, Nielson CM, Marshall LM, et al. The effects of serum testosterone, estradiol, and sex hormone binding globulin levels on fracture risk in older men. J Clin Endocrinol Metab. 2009;94(9):3337–3346. doi: 10.1210/jc.2009-0206
- Amin S, Zhang Y, Sawin CT, et al. Association of hypogonadism and estradiol levels with bone mineral density in elderly men from the Framingham study. Ann Intern Med. 2000;133(12):951–963. doi: 10.7326/0003-4819-133-12-200012190-00010
- Bjørnerem A, Emaus N, Berntsen GK, et al. Circulating sex steroids, sex hormone-binding globulin, and longitudinal changes in forearm bone mineral density in postmenopausal women and men: the Tromsø study. Calcif Tissue Int. 2007;81(2):65–72. doi: 10.1007/s00223-007-9035-z EDN: LTKLHP
- Kuchuk NO, Van Schoor NM, Pluijm SM, et al. The association of sex hormone levels with quantitative ultrasound, bone mineral density, bone turnover and osteoporotic fractures in older men and women. Clin Endocrinol (Oxf). 2007;67(2):295–303. doi: 10.1111/j.1365-2265.2007.02882.x.
- Gennari L, Nuti R, Bilezikian JP. Aromatase activity and bone homeostasis in men. J Clin Endocrinol Metab. 2004;89(12):5898–5907. doi: 10.1210/jc.2004-1717
- Vandenput L, Labrie F, Mellström D, et al. Serum levels of specific glucuronidated androgen metabolites predict bmd and prostate volume in elderly men. J Bone Miner Res. 2007;22(2):220–227. doi: 10.1359/jbmr.061018
- Lunenfeld B, Mskhalaya G, Zitzmann M, et al. Recommendations on the diagnosis, treatment and monitoring of hypogonadism in men. Aging Male. 2015;18(1):5–15. doi: 10.3109/13685538.2015.1004049 EDN: UFOCXP
- Kenny AM, Kleppinger A, Annis K, et al. Effects of transdermal testosterone on bone and muscle in older men with low bioavailable testosterone levels, low bone mass, and physical frailty. J Am Geriatr Soc. 2010;58(6):1134–1143. doi: 10.1111/j.1532-5415.2010.02865.x
- Aversa A, Bruzziches R, Francomano D, et al. Effects of long-acting testosterone undecanoate on bone mineral density in middle-aged men with late-onset hypogonadism and metabolic syndrome: results from a 36 months controlled study. Aging Male. 2012;15(2):96–102. doi: 10.3109/13685538.2011.631230 EDN: PGGXGD
- Snyder PJ, Bauer DC, Ellenberg SS, et al. Testosterone treatment and fractures in men with hypogonadism. N Engl J Med. 2024;390(3):203–211. doi: 10.1056/NEJMoa2308836 EDN: LXOVFR
- Chen WC, Li JR, Wang SS, et al. Conventional androgen deprivation therapy is associated with an increased risk of fracture in advanced prostate cancer, a nationwide population-based study. PLoS One. 2023;18(1):e0279981. doi: 10.1371/journal.pone.0279981 EDN: PDXVAV
- Rhee H, Gunter JH, Heathcote P, et al. Adverse effects of androgen-deprivation therapy in prostate cancer and their management. BJU Int. 2015;115(Suppl 5):3–13. doi: 10.1111/bju.12964 EDN: WSDYYD
- Sivkov AV, Keshishev NG, Rabinovich EZ, Trudov AA. Osteoporosis during the hormonal therapy of prostate cancer and markers of bone tissue remodeling. Experimental and Clinical Urology. 2015;4:46–53. EDN: VPNHJT
- Kanis JA, Johnell O, Oden A, et al. Epidemiology of osteoporosis and fracture in men. Calcif Tissue Int. 2004;75(2):90–99. doi: 10.1007/s00223-004-0287-6 EDN: LRLWMV
- Diab DL, Watts NB. Updates on osteoporosis in men. Endocrinol Metab Clin North Am. 2021;50(2):239–249. doi: 10.1016/j.ecl.2021.03.001 EDN: ZHEGGY
- Kanis JA, Johansson H, McCloskey EV, et al. Previous fracture and subsequent fracture risk: a meta-analysis to update FRAX. Osteoporos Int. 2023;34(12):2027–2045. doi: 10.1007/s00198-023-06870-z EDN: IGPTVT
- Gennari L, Brandi ML. Genetics of male osteoporosis. Calcif Tissue Int. 2001;69(4):200–204. doi: 10.1007/s00223-001-1049-3 EDN: BDWAHB
- Levis S, Lagari VS. The role of diet in osteoporosis prevention and management. Curr Osteoporos Rep. 2012;10(4):296–302. doi: 10.1007/s11914-012-0119-y EDN: KMNFID
- Langsetmo L, Poliquin S, Hanley DA, et al. Dietary patterns in Canadian men and women ages 25 and older: relationship to demographics, body mass index, and bone mineral density. BMC Musculoskelet Disord. 2010;11:20. doi: 10.1186/1471-2474-11-20
- Lin YH, Teng MMH. Different contributions of fat and lean indices to bone strength by sex. PLoS One. 2024;19(11):e0313740. doi: 10.1371/journal.pone.0313740 EDN: ZZJXYC
- Zhang X, Yu Z, Yu M, Qu X. Alcohol consumption and hip fracture risk. Osteoporos Int. 2015;26(2):531–542. doi: 10.1007/s00198-014-2879-y EDN: CQDWRM
- Drapkina OM, Maksimov SA, Shalnova SA. Prevalence of smoking and its changes over time in Russia: data from the ESSE-RF study. Cardiovascular Therapy and Prevention. 2023;22(S8):20–29. doi: 10.15829/1728-8800-2023-3790 EDN: NLZAXM
- Babić Leko M, Pleić N, Gunjača I, Zemunik T. Environmental factors that affect parathyroid hormone and calcitonin levels. Int J Mol Sci. 2021;23(1):44. doi: 10.3390/ijms23010044
- Al-Bashaireh AM, Haddad LG, Weaver M, et al. The effect of tobacco smoking on bone mass: an overview of pathophysiologic mechanisms. J Osteoporos. 2018;2018:1206235. doi: 10.1155/2018/1206235 EDN: KVNZVE
- Compston J. Glucocorticoid-induced osteoporosis: an update. Endocrine. 2018;61(1):7–16. doi: 10.1007/s12020-018-1588-2 EDN: YGTQIP
- Humphrey MB, Russell L, Danila MI, et al. 2022 American college of rheumatology guideline for the prevention and treatment of glucocorticoid-induced osteoporosis. Arthritis Rheumatol. 2023;75(12):2088–2102. doi: 10.1002/art.42646 EDN: MHFBPG
- Compston JE. Extensive expertise in endocrinology: advances in the management of glucocorticoid-induced osteoporosis. Eur J Endocrinol. 2023;188(3):R46–R55. doi: 10.1093/ejendo/lvad029 EDN: YGFVKB
- Trijau S, de Lamotte G, Pradel V, et al. Osteoporosis prevention among chronic glucocorticoid users: results from a public health insurance database. RMD Open. 2016;2(2):e000249. doi: 10.1136/rmdopen-2016-000249
- Baranova IA, Ershova OB, Anaev EK, et al. Analysis of the state-of-the-art of consulting medical care to patients with glucocorticoid-induced osteoporosis or its risk according to the data of a questionnaire survey (GLUCOST study). Therapeutic Archive. 2015;87(5):58–64. doi: 10.17116/terarkh201587558-64 EDN: UKTAMD
- Osteoporosis. Clinical recommendations. 2021. Available from: https://cr.minzdrav.gov.ru/view-cr/87_4 Accessed: Nov 4, 2025. (In Russ.)
- Kanis JA, Melton LJ 3rd, Christiansen C, et al. The diagnosis of osteoporosis. J Bone Miner Res. 1994;9(8):1137–1141. doi: 10.1002/jbmr.5650090802
- Mabuchi S, Ohta R, Sano C. Osteoporosis management in a rural community hospital in Japan: a cross-sectional retrospective study. BMJ Open. 2024;14(11):e086845. doi: 10.1136/bmjopen-2024-086845 EDN: ITZGYQ
- Kanis JA, Johnell O, Oden A, et al. FRAX and the assessment of fracture probability in men and women from the UK. Osteoporos Int. 2008;19(4):385–397. doi: 10.1007/s00198-007-0543-5 EDN: MZKUHF
- Kanis JA, Harvey NC, Cooper C, et al. A systematic review of intervention thresholds based on FRAX : a report prepared for the National Osteoporosis Guideline Group and the International Osteoporosis Foundation. Arch Osteoporos. 2016;11(1):25. doi: 10.1007/s11657-016-0278-z EDN: WSOIYN
- Tosteson AN, Melton LJ 3rd, Dawson-Hughes B, et al. Cost-effective osteoporosis treatment thresholds: the United States perspective. Osteoporos Int. 2008;19(4):437–447. doi: 10.1007/s00198-007-0550-6 EDN: MXCDKN
- Gladkova EN, Tanaev VG, Lesnyak OM, et al. The effectiveness of screening to identify patients with osteoporosis/high risk of fractures in primary health care. Osteoporosis and Bone Diseases. 2022;25(1):14–22. doi: 10.14341/osteo12946 EDN: MODYDH
- Skripnikova IA, Myagkova MA, Shalnova SA, et al. Results of using of therapeutic and diagnostic intervention threshold models, based on 10-year fractures probability according to FRAX, in an epidemiological study. Russian journal of preventive medicine and public health. 2022;25(10):44–53. doi: 10.17116/profmed20222510144 EDN: KEPVIK
- Baranova IA, Suleymanova AK, Zakharova VV. Diagnosis of osteoporosis in copd patients: estimation of the 10-year probability of a major osteoporotic fracture (FRAX), and dual-energy x-ray absorptiometry. 2021;31(3):338–347. doi: 10.18093/0869-0189-2021-31-3-338-347 EDN: QWTIQD
- Nikitinskaya OA, Toroptsova NV. Assessment of 10-year probability of osteoporotic fractures with the russian model of FRAX® in a population-based sample 5 regions of Russia. Medical Council. 2017;(1S):103–107. doi: 10.21518/2079-701X-2017-0-103-107 EDN: XUYBAB
- Gladkova EN, Nikitinskaya OA, Skripnikova IA, et al. FRAX-based intervention thresholds for men in the Russian Federation: expert consensus of the Russian association on osteoporosis. Rheumatology Science and Practice. 2023;61(3):320–329. doi: 10.47360/1995-4484-2023-320-329 EDN: FETYHI
- Ebeling PR, Nguyen HH, Aleksova J, et al. Secondary Osteoporosis. Endocr Rev. 2022;43(2):240–313. doi: 10.1210/endrev/bnab028 EDN: EORBEB
- Gladkova EN, Lesnyak OM, Alexandrov NO, et al. Severe osteoporosis in men in Russian Federation (OSTEO-RF study). Osteoporosis and Bone Diseases. 2020;23(1):74–75. EDN: RXECAN
- Lesnyak OM. Current issues of diagnosis and treatment of osteoporosis in men in general practice. Russian Family Doctor. 2017;21(1):39–44. doi: 10.17816/RFD2017139-44 EDN: VZDLQM
- Vescini F, Chiodini I, Falchetti A, et al. Management of osteoporosis in men: a narrative review. Int J Mol Sci. 2021;22(24):13640. doi: 10.3390/ijms222413640 EDN: STWMKL
- Fink HA, Litwack-Harrison S, Taylor BC, et al. Clinical utility of routine laboratory testing to identify possible secondary causes in older men with osteoporosis: the osteoporotic fractures in men (MrOS) study. Osteoporos Int. 2016;27(1):331–338. doi: 10.1007/s00198-015-3356-y EDN: QBGJSP Erratum in: Osteoporos Int. 2017;28(1):419–420. doi: 10.1007/s00198-016-3805-2
- Ryan CS, Petkov VI, Adler RA. Osteoporosis in men: the value of laboratory testing. Osteoporos Int. 2011;22(6):1845–1853. doi: 10.1007/s00198-010-1421-0 EDN: OVZTWY
- Watts NB, Adler RA, Bilezikian JP, et al. Osteoporosis in men: an Endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2012;97(6):1802–1822. doi: 10.1210/jc.2011-3045
- Bhasin S, Brito JP, Cunningham GR, et al. Testosterone therapy in men with hypogonadism: an Endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2018;103(5):1715–1744. doi: 10.1210/jc.2018-00229 EDN: YFSEIX
- Fuggle NR, Beaudart C, Bruyère O, et al. Evidence-based guideline for the management of osteoporosis in men. Nat Rev Rheumatol. 2024;20(4):241–251. doi: 10.1038/s41584-024-01094-9 EDN: LLKPZK
补充文件

