Opportunities to improve the diagnosis chronic tndometritis

封面


如何引用文章

全文:

详细

Goal of the research: optimization of the diagnosis of chronic endometritis.

Methodology: perspective research.

Institution: Department of obstetrics and gynecology of the Kursk medical University.

Material of the research: 67 patients suffering benign diseases of endometrium and myometrium connected with it. 59 patients with the diseases of the uterus of the same пaтe without chronic endometritis.

Methods of the research: clinico-laboratory, ultrasonography, hysteroscopic, histologic, cytologic, microbiologic examination of the endometrium, PSR, radioimmunological method to determine progesterone rate in the blood plasma.

Results of the research: the endoscopice variants of chronic endometritis are extreted: hyperplastic and hypoplastic (and also its forms - focal and diffusive). They are necessary stages achieving reliable diagnosis of the inflammatory process of endometrium a differential method of probing of endometrium depending on a variant and damage rate of chronic endometritis is worked out.

Conclusion: the complex method of the diagnosis chronic endometritis including hysteroscopy with visual biopsy and cytologic-histologic examination of endometrium increases the quality of diagnosis by 64,4% in comparison with the traditional curettement of the endometrium and considerably decreases the number of posttraumatic and inflammatory complications.

作者简介

M. Gazazyan

State Medical University

编辑信件的主要联系方式.
Email: info@eco-vector.com

Department of Obstetrics and Gynecology

俄罗斯联邦, Kursk

O. Khutsishvili

State Medical University

Email: info@eco-vector.com

Department of Obstetrics and Gynecology

俄罗斯联邦, Kursk

T. lvanova

State Medical University

Email: info@eco-vector.com

Department of Obstetrics and Gynecology

俄罗斯联邦, Kursk

I. Lunova

State Medical University

Email: info@eco-vector.com

Department of Obstetrics and Gynecology

俄罗斯联邦, Kursk

参考

补充文件

附件文件
动作
1. JATS XML

版权所有 © Eсо-Vector, 2021



Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).