ОСОБЕННОСТИ ЭЛЕКТРОННОГО СОСТОЯНИЯ ИОНОВ МЕДИ В СОЕДИНЕНИЯХ СО СТРУКТУРОЙ ДЕЛАФОССИТА CuBO2 (B = Al, Cr, Fe)
- Авторы: Смольников А.Г.1, Оглобличев В.В.1, Пискунов Ю.В.1, Садыков А.Ф.1
-
Учреждения:
- Институт физики металлов имени М.Н. Михеева УрО РАН
- Выпуск: Том 126, № 8 (2025)
- Страницы: 857-864
- Раздел: ЭЛЕКТРИЧЕСКИЕ И МАГНИТНЫЕ СВОЙСТВА
- URL: https://medbiosci.ru/0015-3230/article/view/303490
- DOI: https://doi.org/10.7868/S3034621525080025
- ID: 303490
Цитировать
Аннотация
Измерены спектры ядерного квадрупольного резонанса (ЯКР) 63,65Cu соединений CuCrO2 и CuAlO2 в широкой области температур (30 – 380 K). Спектры представляют из себя две линии гауссовой формы шириной на половине высоты Δ63ν = 30 кГц для CuCrO2 и Δ63ν = 55 кГц для CuAlO2. Частота наблюдения резонансов 63,65νQ (T) увеличивается при понижении температуры и ниже 100 K выходит на плато при Al νQ = 28.29 МГц и Cr 63νQ = 27.11 МГц. Совместный анализ ЯМР, ЯКР и структурных данных всего ряда изоструктурных соединений CuBO2 (B = Al, Cr, Fe) позволяет обоснованно предполагать наличие у ионов Cu+ гибридизованных 3dz2-r2 – 4s-орбиталей.
Ключевые слова
Об авторах
Алексей Геннадьевич Смольников
Институт физики металлов имени М.Н. Михеева УрО РАН
Автор, ответственный за переписку.
Email: smolnikov@imp.uran.ru
ORCID iD: 0000-0001-6295-9530
SPIN-код: 1684-9267
ResearcherId: J-9285-2013
Россия, ул. С. Ковалевской, 18, Екатеринбург, 620108 Россия
Василий Владимирович Оглобличев
Институт физики металлов имени М.Н. Михеева УрО РАН
Email: ogloblichev@imp.uran.ru
ORCID iD: 0000-0003-0520-7521
ResearcherId: K-3399-2013
Россия, ул. С. Ковалевской, 18, Екатеринбург, 620108 Россия
Юрий Владимирович Пискунов
Институт физики металлов имени М.Н. Михеева УрО РАН
Email: piskunov@imp.uran.ru
ORCID iD: 0000-0002-6115-6207
ResearcherId: J-7799-2013
Россия, ул. С. Ковалевской, 18, Екатеринбург, 620108 Россия
Алмаз Фаритович Садыков
Институт физики металлов имени М.Н. Михеева УрО РАН
Email: Sadykov@imp.uran.ru
ORCID iD: 0000-0003-1742-278X
SPIN-код: 4628-1634
ResearcherId: J-3528-2013
Россия, ул. С. Ковалевской, 18, Екатеринбург, 620108 Россия
Список литературы
- Seki S., Onose Y., Tokura Y. Spin-Driven Ferroelectricity in Triangular Lattice Antiferromagnets ACrO2 (A = Cu, Ag, Li, or Na) // Phys. Rev. Letters. 2008. V. 101. P. 067204.
- Kimura T., Lashley J.C., Ramirez A.P. Inversion-symmetry breaking in the noncollinear magnetic phase of the triangular-lattice antiferromagnet CuFeO2 // Phys. Rev. B. 2006. V. 73. P. 220401.
- Lummen T.T.A., Strohm C., Rakoto H., van Loosdre-cht P.H.M. Mapping the magnetic phase diagram of the frustrated metamagnet CuFeO2 // Phys. Rev. B. 2010. V. 81. P. 224420.
- Marquardt M.A., Ashmore N.A., Cann D.P. Crystal chemistry and electrical properties of the delafossite structure // Thin Solid Films. 2006. V. 496. P. 146–156.
- Sobolev A., Rusakov V., Moskvin A., Gapochka A., Belik A., Glazkova I., Akulenko A., Demazeau G., Presniakov I. 57Fe Mössbauer study of unusual mag-netic structure of multiferroic 3R-AgFeO2 // J. Phys.: Condens. Matter. 2017. V. 29. P. 275803.
- Minami T. Transparent conducting oxide semiconductors for transparent electrodes // Semicond. Sci. Technol. 2005. V. 20. No. 4. P. 35–44.
- Nikitine S., Grun J.B., Sieskind M. Etude spectrophotometrique de la serie jaune de Cu2O aux basses temperatures // J. Phys. Chem. Solids. 1961. V. 17. P. 292–300.
- Lalić M.V., Mestnik-Filho J. Semiconductor properties of Cu-based delafossites revealed by an electric field gradient study // J. Phys.: Condens. Matter. 2006. V. 18. P. 1619–1628.
- Ono Y., Satoh K., Nozaki T., Kajitani T. Structural, Magnetic and Thermoelectric Properties of Delafos-site-type Oxide, CuCr1-xMgxO2 (0 ≤ x ≤ 0.05) // Jpn. J. Appl. Phys. 2007. V. 46. No. 3A. P. 1071–1075.
- Moreira M., Afonso J., Crepelliere J., Lenoble D., Lunca-Popa P. A review on the p-type transparent Cu–Cr–O delafossite materials // J. Mater. Sci. 2022. V. 57. P. 3114–3142.
- Chfii H., Bourich A., Soucase B.M., Abd-Lefdil M. Structural and physical properties of Mg-doped Cu-CoO2 delafossite thin films // Mater. Chem. Phys. 2023. V. 306. P. 128006.
- Li F., Wei J., Wang D., Han Y., Han D., Gong J. Ce-doped CuCoO2 delafossite with switchable PMS activation pathway for tetracycline degradation // Chem. Eng. J. 2024. V. 481. P. 148633.
- Torres J.C. Sánchez-Palencia P., Jiménez-Sáez J.C., Wahnón P., Palacios P. Effect of Changing and Combining Trivalent Metals in the Structural and Electronic Properties of Cu-Based Crystal Delafossite Materials // Crystals. 2024. V. 14. P. 418.
- Matasov A., Bush A., Kozlov V., Glaz O. The effect of electric field threshold switching from high resistivity to low resistivity state in ceramic samples of CuCr1–xAlxO2 delafossite solid solutions // Eur. Phys. J. B. 2024. V. 97. P. 99.
- Boyraz C., Aksu P., Guler A., Oner Y., Fujioka M. Short-range magnetic order at low temperatures, exchange bias, and negative magnetization in undoped CuCrO2 // J. Electr. Mater. 2023. V. 52. P. 4822–4840.
- Matasov A., Bush A., Kozlov V., Stash A. 3R-CuCrO2 delafosite: crystal growth, crystal structure, dielectric and DC conductivity properties // Discover Mater. 2024. V. 4. P. 73.
- Benreguia N., Rekhila G., Younes A., Abdi A., Trari M. Optical and electrical properties of the delafossite Cu-CrO2 synthesized by coprecipitation // Inorganic Chem. Comm. 2024. V. 162. P. 112154.
- Ok J.M., Park B.J., Hwang J., Park S., Kang M., Kim J.S., Kim K., Baek S.H. Observation of gapless collective charge fluctuations in an Anderson insu-lating state / arXiv preprint arXiv:2508.07215. 2025. P. 1–16.
- Tate J., Ju H.L., Moon J.C., Zakutayev A., Richard A.P., Russell J., McIntyre D.H. Origin of p-type conduction in single-crystal CuAlO2 // Phys. Rev. B. 2009. V. 80. P. 165206.
- Arnold T., Payne D.J., Bourlange A., Hu J.P., Egdell R.G., Piper L.F.J., Colakerol L., De Masi A., Glans P.-A., Learmonth T., Smith K.E., Guo J., Scanlon D.O., Waksh A., Morgan B.J., Watson G.W. X-ray spectroscopic study of the electronic structure of Cu-CrO2 // Phys. Rev. B. 2009. V. 79. P. 075102.
- Yokobori T., Okawa M., Konishi K., Takei R., Katayama K., Oozono S., Shinmura T., Okuda T., Wadati H., Sakai E., Ono K., Kumigashira H., Oshima M., Sugiyama T., Ikenaga E., Hamada N., Saitoh T. Electronic structure of the hole-doped delafossite oxides CuCr1−xMgxO2 // Phys. Rev. B. 2013. V. 87. P. 195124.
- Poienar M., Hardy V., Kundys B., Singh K., Maignan A., Damay F., Martin C. Revisiting the properties of delafossite CuCrO2: A single crystal study // J. Solid State Chem. 2012. V. 185. P. 56–61.
- Yanagi H., Inoue S., Ueda K., Kawazoe H., Hosono H., Hamada N.. Electronic structure and optoelectronic properties of transparent p-type conducting CuAlO2 // J. Appl. Phys. 2000. V. 88. P. 4159–4163.
- Maouhoubi A., Ouzaroual L., Toual Y., Mouchou S., Mezzat F., Azouaoui A., Ez-Zahraouy H., Hourmatallah A., Bouslykhane K., Benzakour N. Structural, electronic and magnetic properties of the CuFeO2 multiferroic compound // Arabian J. Chem. 2024. V. 17. P. 105437.
- Poienar M., Damay F., Martin C., Hardy V., Maignan A., André G. Structural and magnetic properties of CuCr1−xMgxO2 by neutron powder diffraction // Phys. Rev. B. 2009. V. 79. P. 014412.
- Ye F., Ren Y., Huang Q., Fernandez-Bac J.A., Dai P., Lynn J.W., Kimura T. Spontaneous spin-lattice coupling in the geometrically frustrated triangular lattice antiferromagnet CuFeO2 // Phys. Rev. B. 2006. V. 73. P. 220404.
- Frontzek M., Ehlers G., Podlesnyak A., Cao H., Matsuda M., Zaharko O., Aliouane N., Barilo S., Shiry-aev S.V. Magnetic structure of CuCrO2: a single crystal neutron diffraction study // J. Phys.: Condens. Matter. 2011. V. 24. P. 016004.
- Nakamura S., Kobayashi Y., Kitao S., Seto M., Fuwa A., Terada N. Mössbauer spectroscopy of the magnetic-field-induced ferroelectric phase of CuFeO2 // J. Phys. Soc. Jpn. 2015. V. 84. P. 024719.
- Sakhratov Yu.A., Svistov L.E., Kuhns P.L., Zhou H.D., Reyes A.P. Magnetic phases of the quasi-two-dimensional antiferromagnet CuCrO2 on a triangular lat-tice // Phys. Rev. B. 2016. V. 94. P. 094410.
- Frontzek M., Haraldsen J.T., Podlesnyak A., Matsuda M., Christianson A.D., Fishman R.S., Sefat A.S., Qiu Y., Copley J.R.D., Barilo S., Shiryaev S.V., Ehlers G. Magnetic excitations in the geometric frustrated multiferroic CuCrO2 // Phys. Rev. B. 2011. V. 84. P. 094448.
- Ogloblichev V.V., Smolnikov A.G., Sadykov A.F., Piskunov Y.V., Gerashenko A.P., Furukawa Y., Kumagai K., Yakubovsky A.Yu., Mikhalev K.N., Barilo S.N., Shiryaev S.V., Belozerov A.S. 17O NMR study of the triangular lattice antiferromagnet CuCrO2 // JMMM. 2018. V. 458. P. 1–9.
- Smol’nikov A.G., Ogloblichev V.V., Verkhovskii S.V., Mikhalev K.N., Yakubovskii A.Y., Kumagai K., Furukawa Y., Sadykov A.F., Piskunov Yu.V., Gerashchen-ko A.P., Barilo S.N., Shiryaev S.V. 53Cr NMR study of CuCrO2 multiferroic // JETP Letters. 2015. V. 102. P. 674–677.
- Ogloblichev V.V., Smolnikov A.G., Germov A.Y., Piskunov Y.V., Sadykov A.F., Mikhalev K.N., Yakubovsky A.Yu., Barilo S.N., Shiryaev S.V. 63,65Cu NMR Study of the Short-Range Ordered State of Multiferroic CuFeO2 // Appl. Magn. Resonance. 2019. V. 50. P. 371–379.
- Smol’nikov A.G., Ogloblichev V.V., Verkhovskii S.V., Mikhalev K.N., Yakubovskii A.Y., Furukawa Y., Piskunov Yu.V., Sadykov A.F., Barilo S.N., Shiryaev S.V. Specific features of magnetic order in a multiferroic compound CuCrO2 determined using NMR and NQR data for 63,65Cu nuclei // Phys. Met. Metal. 2017. V. 118. No. 2. P. 134–142.
- Ogloblichev V.V., Smolnikov A.G., Buzlukov A.L., Piskunov Y.V., Arapova I.Y., Sadykov A.F., and Matukhin V.L. Low-frequency dynamics of charge carriers in CuAlO2 semiconductor according to NMR data // J. Exp. Theoret. Phys. 2021. V. 133. P. 567–573.
- Mikhalev K.N., Sadykov A.F., Piskunov Y.V., Gerashchenko A.P., Yakubovskii A.Yu., Muflikhonova M.A., Barilo S.N., Shiryaev S.V. Charge Distribution and Hyperfine Interactions in the CuFeO2 Multiferroic According to 63,65Cu NMR Data // JETP Letters. 2018. V. 107. No. 2. P. 134–138.
- Zalazinskii A.G., Balakirev V.F., Chebotaev N.M., Chufarov G.I. Thermodynamic analysis of the reduction, dissociation, and formation of copper (I) aluminate (CuAlO2), chromate (III)(CuCrO2), and ferrate (II)(CuFeO2) from the free elements and oxides // Russ. J. Inorg. Chem. 1969. V. 14. No. 3. P. 326–328.
- Matukhin V.L., Khabibullin I.H., Shulgin D.A., Schmidt S.V., Terukov E.I. Investigation of the promising thermoelectric compound CuAlO2 by the method of nuclear quadrupole resonance in Cu // Semiconductors. 2012. V. 46. P. 1102–1105.
- Kushida T., Benedek G.B., Bloembergen N. Dependence of the Pure Quadrupole Resonance Frequency on Pressure and Temperature // Phys. Rev. 1956. V. 104. P. 1364.
- Гречишкин В.С. Ядерные квадрупольные взаимо-действия в твердых телах. М.: Наука, 1973. 263 с.
- Gippius A.A., Gunbin A.V., Iarygina D.A., Tkachev A.V., Zhurenko S.V., Verchenko V.Yu., Plenkin D.S., Shevelkov A.V. Microscopic properties of Mo4Ga20Sb intermetallic superconductor in normal and superconducting states as evidenced by NMR and NQR spectroscopy // J. Alloys Compounds. 2022. V. 927. P. 166970.
- Liu Q.J., Liu Z.T., Feng L.P. Theoretical calculations of mechanical, electronic, chemical bonding and optical properties of delafossite CuAlO2 // Physica B: Condensed Matter. 2010. V. 405. P. 2028–2033.
- Monteiro J.F.H.L., de Souza G.B., Jurelo A.R., de Oliveira W.R., Siqueira E.C. Mechanical properties of CuCrO2 delafossite oxide single crystals // Appl. Phys. A. 2020. V. 126. P. 215.
- Nam Y.S., Yoon J.S., Ju H.L., Chang S.K., Baek K.S. Temperature-dependent photoluminescence of CuAlO2 single crystals fabricated by using a flux self-removal method // J. Korean Phys. Soc. 2014. V. 65. No. 7. P. 1068–1072.
- Zhang L., Cheng Y., Ji. G. Thermodynamic and optical properties of CuAlO2 under pressure from first principle. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 2015. V. 30. P. 1338–1344.
- Okuda T., Beppu Y., Fujii Y., Onoe T., Terada N., Miyasaka S. Specific heat of delafossite oxide CuCr1−xMgxO2 (0 ≤ x ≤ 0.03) // Phys. Rev. B. 2008. V. 77. P. 134423.
- Li J., Sleight A.W., Jones C.Y., Toby B.H. Trends in negative thermal expansion behavior for AMO2 (A = Cu or Ag; M = Al, Sc, In, or La) compounds with the delafossite structure // J. Solid State Chem. 2005. V. 178. No. 1. P. 285–294.
- Ye F., Ren Y., Huang Q., Fernandez-Baca J.A., Dai P., Lynn J.W., Kimura T. Spontaneous spin-lattice coupling in the geometrically frustrated triangular lattice antiferromagnet CuFeO2 // Phys. Rev. B. 2006. V. 73. P. 220404.
- Ogloblichev V.V., Sadykov A.F., Furukawa Y., Ding Q.P., Smolnikov A.G., Piskunov Y.V., Mikhalev K.N., Gerashenko A.P., Wu A. Barilo S.N., Shiryaev S.V. 63,65Cu NMR study of the magnetically ordered state of the multiferroic CuFeO2 // JMMM. 2020. V. 504. P. 166668.
- Hanzawa K. Analysis of the Electric Field Gradients and the Knight Shifts at All Cu and O Nuclei in YBa2Cu3O7 // J. Phys. Soc. Japan. 1993. V. 62. No. 9. P. 3302–3314.
- Zuo J.M., Kim M., O’Keeffe M., Spence J.C.H. Direct observation of d-orbital holes and Cu–Cu bonding in Cu2O // Nature. 1999. V. 401. P. 49–52.
- Buljan A., Alemany P., Ruiz E. Electronic Structure and Bonding in CuMO2 (M = Al, Ga, Y) Delafossite-Type Oxides: An Ab Initio Study // J. Phys. Chem. B. 1999. V. 103. P. 8060–8066.
- Orgel L.E. 843. Stereochemistry of Metals of the B Subgroups. Part I. Ions with Filled d-Electron Shells // J. Chem. Soc. (Resumed). 1958. P. 4186–4190.
- Watson R.E., Freeman A.J. Electronic Polarizabilities and Sternheimer Shielding Factors // Phys. Rev. 1963. V. 131. No. 1. P. 250–255.
- Shimizu T. On the Electric Field Gradient at Copper Nuclei in Oxides // J. Phys. Soc. Jpn. 1993. V. 62. No. 2. P. 772–778.
Дополнительные файлы


