ТРАНСКРИБИРУЕМЫЕ РЕГУЛЯТОРНЫЕ ЭЛЕМЕНТЫ: НЕДОСТАЮЩЕЕ ЗВЕНО В ПРИКЛАДНОЙ ГЕНОМИКЕ ЖИВОТНОВОДСТВА

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Транскрибируемые регуляторные элементы (энхансеры, промоторы) представляют ключевое звено в прикладной геномике животноводства. Несмотря на прогресс в технологиях геномной селекции (GWAS, CRISPR), недостаточная аннотация некодирующих участков генома остается серьезным ограничением. В работе особое внимание уделено методам прямого анализа транскрипционной активности (CAGE-seq), позволяющим точно идентифицировать регуляторные элементы и устанавливать их связь с фенотипическими признаками. Рассмотрены перспективные направления исследований, включая эпигенетические механизмы (проект FarmEpiMap), применение квантовых вычислений для анализа больших данных и разработку адаптированных решений для различных популяций сельскохозяйственных животных. Подчеркивается важность международных инициатив (консорциум FAANG) при необходимости учета региональных особенностей генетических ресурсов.

Об авторах

О. А. Гусев

Институт биохимии и генетики – обособленное структурное подразделение Уфимского федерального исследовательского центра Российской академии наук; ООО «ЛИФТ Центр»

Email: extreme.biology.lab@gmail.com
Уфа, Россия; Москва, Сколково, Россия

А. С. Карунас

Институт биохимии и генетики – обособленное структурное подразделение Уфимского федерального исследовательского центра Российской академии наук

Уфа, Россия

Э. К. Хуснутдинова

Институт биохимии и генетики – обособленное структурное подразделение Уфимского федерального исследовательского центра Российской академии наук

Уфа, Россия

Список литературы

  1. Dekkers J.C., Hospital F. The use of molecular genetics in the improvement of agricultural populations // Nat. Rev. Genet. 2002. V. 1. P. 22–32. https://doi.org/10.1038/nrg70
  2. Loffi C., Cavanna D., Sammarco G. et al. Non-targeted high-resolution mass spectrometry study for evaluation of milk freshness // J. Dairy Sci. 2021. V. 104. № 12. P. 12286–12294. https://doi.org/10.3168/jds.2021-20285
  3. Tzanetou E.N., Manea-Karga E., Baira E. et al. Gas and liquid chromatography mass spectrometry as a tool for elucidating volatile organic compounds (VOCs) and metabolites in maternal milk: A perspective on infants’ health risk assessment // Chemosensors. 2024. V. 12. № 3. https://doi.org/10.3390/chemosensors12030030
  4. Perera T.W., Skerrett-Byrne D.A., Gibb Z. et al. The future of biomarkers in veterinary medicine: Emerging approaches and associated challenges // Animals. (Basel). 2022. V. 12. № 17. https://doi.org/10.3390/ani12172194
  5. Goddard M.E., Hayes B.J. Mapping genes for complex traits in domestic Animals and Their Use in Breeding Programmes // Nat. Rev. Genet. 2009. V. 10. P. 381–391. https://doi.org/10.1038/nrg2575
  6. Koufariotis L., Chen Y.P., Bolormaa S., Hayes B.J. Regulatory and coding genome regions are enriched for trait associated variants in dairy and beef cattle // BMC Genomics. 2014. V. 15. https://doi.org/10.1186/1471-2164-15-436
  7. Wang M., Hancock T.P., MacLeod I.M. et al. Putative enhancer sites in the bovine genome are enriched with variants affecting complex traits // Genet. Sel. Evol. 2017. V. 49. P. 56. https://doi.org/10.1186/s12711-017-0331-4
  8. Lamas-Toranzo I., Guerrero-Sánchez J., Miralles-Bover H. et al. CRISPR is knocking on barn door // Reprod. Domest. Anim. 2017. V. 52. P. 39–47. https://doi.org/10.1111/rda.13047
  9. Harrison P.W., Sokolov A., Nayak A. et al. The FAANG data portal: Global, Open-Access, “FAIR”, and richly validated genotype to phenotype data for high-quality functional annotation of animal genomes // Front. Genet. 2021. V. 12. https://doi.org/10.3389/fgene.2021.639238
  10. Liu S., Gao Y., Canela-Xandri O. et al. A multi-tissue atlas of regulatory variants in cattle // Nat. Genet. 2022. V. 54. P. 1438–1447. https://doi.org/10.1038/s41588-022-01153-5
  11. The CattleGTEx atlas reveals regulatory mechanisms underlying complex traits // Nat. Genet. 2022. V. 54. P. 1273–1274. https://doi.org/10.1038/s41588-022-01155-3
  12. Kern C., Wang Y., Xu X. et al. Functional annotations of three domestic animal genomes provide vital resources for comparative and agricultural research // Nat. Commun. 2021. V. 12. P. 1821. https://doi.org/10.1038/s41467-021-22100-8
  13. Čítek J., Brzáková M., Bauer J. et al. Genome-Wide Association study for body conformation traits and fitness in Czech Holsteins // Animals. 2022. V. 12. https://doi.org/10.3390/ani12243522
  14. Boytsov A., Abramov S., Aiusheeva A.Z. et al. ANANASTRA: Annotation and enrichment analysis of allele-specific transcription factor binding at SNPs // Nucl. Ac. Res. 2022. V. 50. P. 51–56. https://doi.org/10.1093/nar/gkac262
  15. Bonetti A., Kwon A.T.-J., Arner E., Carninci P. Enhancers and promoters, methods and protocols // Methods Mol. Biology. 2021. V. 2351. P. 201–210. https://doi.org/10.1007/978-1-0716-1597-3_11
  16. Abugessaisa I., Shimoji H., Sahin S. et al. FANTOMS Transcriptome catalog of cellular states based on semantic MediaWiki // Database J. Biol. Databases Curation. 2016. https://doi.org/10.1093/database/baw105
  17. Frankish A., Diekhans M., Jungreis I. et al. GENCODE 2021 // Nucl. Ac. Res. 2020. V. 49. № D1. P. D916–D923. https://doi.org/10.1093/nar/gkaa1087
  18. Deviatitarov R., Lizio M., Gusev O. Application of a CAGE method to an avian development study // Methods Mol. Biology. 2017. V. 1650. P. 101–109. https://doi.org/10.1007/978-1-4939-7216-6_6
  19. Lizio M., Deviatitarov R., Nagai H. et al. Systematic analysis of transcription start sites in avian development // PloS Biol. 2017. V. 15. https://doi.org/10.1371/journal.pbio.2002887
  20. Salavati M., Caulton A., Clark R. et al. Global analysis of transcription start sites in the new ovine reference genome (Oar Rambouillet v.1.0) // Front. Genet. 2020. V. 11. https://doi.org/10.3389/fgene.2020.580580
  21. Davenport K.M., Massa A.T., Bhattarai S. et al. Characterizing genetic regulatory elements in ovine tissues // Front. Genet. 2021. V. 12. https://doi.org/10.3389/fgene.2021.628849

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).