Resins Transformation in the Cracking of High Sulfur Vaccum Residue

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The results of the study of resins isolated from liquid cracking products of sulfuric vacuum residue from Omsk refinery are presented. Thermal treatment was carried out at 500 °C and duration of 15, 30, 45 and 60 minutes. It was found that with increasing duration of vacuum residue cracking there is an increase in coke yield due to condensation of resins into asphaltenes and further into coke. Using the data of 1H-NMR spectroscopy, elemental composition and results of molecular weight measurement the changes of structural-group parameters of resins in the process of cracking were established. The averaged resin molecules become more condensed, characterized by an increased content of aromatic fragments, a decrease in the number of naphthenic fragments and the number of aliphatic substituents. The totality of data on changes in the composition of cracking products, together with the analysis of sulfur distribution in the composition of products, indicates a significant contribution of sulfur-containing structural fragments of resins to the accumulation of thiophene derivatives. It is shown that cracking of resins is accompanied by formation of a wide range of low-molecular-weight sulfur-containing compounds that are incorporated into oils.

Авторлар туралы

A. Goncharov

Institute of Petroleum Chemistry of Siberian Branch of the Russian Academy of Sciences (IPC SB RAS), Tomsk

Хат алмасуға жауапты Автор.
Email: mad111-2011@mail.ru
Tomsk

E. Krivtsov

Institute of Petroleum Chemistry of Siberian Branch of the Russian Academy of Sciences (IPC SB RAS), Tomsk

Email: john@ipc.tsc.ru
Tomsk

Әдебиет тізімі

  1. Sawarkar A.N. // Petroleum Science and Technology. 2019. V. 37. №. 9. P. 1090. https://doi.org/10.1080/10916466.2019.1575875.
  2. Prajapati R., Kohli K., Maity S.K., Garg M.O. // Fuel. 2017. V. 203. P. 514. https://doi.org/10.1016/j.fuel.2017.04.126.
  3. Felix G., Tirado A., Varfolomeev M.A., Al-muntaser A., Suwaid M., Yuan Ch., Ancheyata J. // Geoenergy Science and Engineering. 2023. V. 230. P.212242. https://doi.org/10.1016/j.geoen.2023.212242.
  4. Певнева Г.С., Воронецкая Н.Г., Гончаров А.В., Корнеев Д.С. // ХТТ. 2024. № 2. С. 31. https://doi.org/10.31857/S0023117724020068.
  5. Kheirolahi S., BinDanbag M., Bagherzadeh H., Abbasi Z. // Fuel. 2024. V. 371. P. 131884. https://doi.org/10.1016/j.fuel.2024.131884.
  6. Pagan Pagan N.M., Zhang Z., Nguyen T.V., Marciel A.B., Biswal S.B. // Chemical Reviews. 2022. V. 122. P.7205. https://doi.org/10.1021/acs.chemrev.1c00897.
  7. Fakher S., Ahdaya M., Elturki., Imqam A. // Journal of Petroleum Exploration and Production Technology. 2020. V. 10. P. 1183.
  8. Головко А.К., Гринько А.А. // Нефтехимия. 2018. Т. 58. № 4. С. 391. https://doi.org/10.1134/S002824211804008X. [Petroleum Chemistry, 2019, vol. 58, no. 8, p. 599. https://doi.org/10.1134/S0965544118080078].
  9. Primerano K., Mirwald J., Hofko B. // Fuel. 2024. V. 368. P. 131616. https://doi.org/10.1016/j.fuel.2024.131616.
  10. Goncharov A.V., Krivtsov E.B., Sviridenko N.N., Golovko A.K. // IOP Conf. Ser.: Mater. Sci. 2019. P. 012022. https://doi.org/10.1088/1757-899X/597/1/012022.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).