Recombinase-Based Engineering of Plant Genomes in the Era of Genome Editing
- Authors: Rozov S.M.1, Deineko E.V.1
-
Affiliations:
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences
- Issue: Vol 59, No 6 (2025)
- Pages: 873-890
- Section: ОБЗОРЫ
- URL: https://medbiosci.ru/0026-8984/article/view/358224
- DOI: https://doi.org/10.7868/S3034555325060016
- ID: 358224
Cite item
Abstract
Keywords
About the authors
S. M. Rozov
Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences
Email: rozov@bionet.nsc.ru
Novosibirsk, Russia
E. V. Deineko
Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences
Email: deineko@bionet.nsc.ru
Novosibirsk, Russia
References
- Ishino Y., Krupovic M., Forterre P. (2018) History of CRISPR-Cas from encounter with a mysterious repeated sequence to genome editing technology. J. bacteriol. 200, 1110–1128.
- Sadowski P. (1986) Site-specific recombinases: changing partners and doing the twist. J. Bacteriol. 165, 341–347.
- Turan S., Bode J. (2011) Site-specific recombinases: from tag-and-target-to tag-and-exchange-based genomic modifications. FASEB J. 25, 4088–4107.
- Hwang J., Ye D.Y., Jung G.Y., Jang S. (2024) Mobile genetic element-based gene editing and genome engineering: recent advances and applications. Biotechnol. Adv. 72, 108343.
- Grindley N.D.F., Whiteson K.L., Rice P.A. (2006) Mechanisms of site-specific recombination. Annu. Rev. Biochem. 75, 567–605.
- Wang Y., Yau Y.Y., Perkins-Balding D., Thomson J.G. (2011) Recombinase technology: applications and possibilities. Plant Сell Rep. 30, 267–285.
- Liao H., Wu J., VanDusen N.J., Li Y., Zheng, Y. (2024) CRISPR-Cas9-mediated homology-directed repair for precise gene editing. Mol. Therapy Nucl. Acids. 35, 102344.
- Collonnier C., Guyon-Debast A., Maclot F., Mara K., Charlot F., Nogué F. (2017) Towards mastering CRISPR-induced gene knock-in in plants: survey of key features and focus on the model Physcomitrella patens. Methods. 121, 103–117.
- Rozov S.M., Permyakova N.V., Sidorchuk Y.V., Deineko E.V. (2022) Optimization of genome knockin method: Search for the most efficient genome regions for transgene expression in plants. Internat. J. Mol. Sci. 23, 4416.
- Pan Y., Zhao C., Fu W., Yang S., Lv S. (2024) Comparative analysis of structural dynamics and allosteric mechanisms of RecA/Rad51 family proteins: integrated atomistic MD simulation and network-based analysis. Internat. J. Biol. Macromol. 261, 129843.
- Wang Y., Yau Y.Y., Perkins-Balding D., Thomson J.G. (2011) Recombinase technology: applications and possibilities. Plant Cell Rep. 30, 267–285. https://doi.org/10.1007/s00299-010-0938-1
- Gaj T., Sirk S.J., Barbas C.F. (2014) Expanding the scope of site-specific recombinases for genetic and metabolic engineering. Biotechnol. Bioeng. 111, 1–15. https://doi.org/10.1002/bit.25096
- Fogg P.C., Colloms S., Rosser S., Stark M., Smith M.C. (2014) New applications for phage integrases. J. Mol. Boil. 426, 2703–2716.
- Auvray F., Coddeville M., Espagno G., Ritzenthaler P. (1999) Integrative recombination of Lactobacillus delbrueckii bacteriophage mv4: functional analysis of the reaction and structure of the attP site. Mol. Gen. Genet. MGG. 262, 355–366.
- Diaz V., Servert P., Prieto I., Gonzalez MA., Martinez A.C., Alonso J.C., Bernad A. (2001) New insights into host factor requirements for prokaryotic beta-recombinase-mediated reactions in mammalian cells. J. Biol. Chem. 276, 16257–16264.
- Schwikardi M., Droge P. (2000) Site-specific recombination in mammalian cells catalyzed by gammadelta resolvase mutants: implications for the topology of episomal DNA. FEBS Lett. 471, 147–150.
- Thomson J.G., Ow D.W. (2006) Site-specific recombination systems for the genetic manipulation of eukaryotic genomes. Genesis. 44, 465–476.
- Thomson J.G., Yau Y.Y., Blanvillain R., Chiniquy D., Thilmony R., Ow D.W. (2009) ParA resolvase catalyzes site-specific excision of DNA from the Arabidopsis genome. Transgenic Res. 18, 237–248.
- Mouw K.W., Rowland S.J., Gajjar M.M., Boocock M.R., Stark W.M., Rice P.A. (2008) Architecture of a serine recombinase–DNA regulatory complex. Mol. Cell. 30, 145–155.
- Rice P.A. (2015) Serine resolvases. In: Mobile DNA III (eds Chandler M., Gellert M., Lambowitz A.M., Rice P.A., Sandmeyer S.B.). Am. Soc. Microbiol. Press. 237–252.
- Ghosh P., Pannunzio N.R., Hatfull G.F. (2005) Synapsis in phage Bxb1 integration: selection mechanism for the correct pair of recombination sites. J. Mol. Biol. 349, 331–348.
- Smith M.C.A., Till R., Brady K., Soultanas P., Thorpe H., Smith M.C.M. (2004) Synapsis and DNA cleavage in phiC31 integrasemediated site-specific recombination. Nucl. Acids Res. 32, 2607–2617.
- Olorunniji F.J., Buck D.E., Colloms S.D., McEwan A.R., Smith M.C., Stark W.M., Rosser S.J. (2012) Gated rotation mechanism of site-specific recombination by ΦC31 integrase. Proc. Natl. Acad. Sci. USA. 109, 19661–19666.
- Zhang L., Ou X., Zhao G., Ding X. (2008) Highly efficient in vitro site-specific recombination system based on Streptomyces phage ΦBT1 integrase. J. Bacteriol. 190, 6392–6397.
- Gidoni D., Srivastava V., Carmi N. (2008) Site-specific excisional recombination strategies for elimination of undesirable transgenes from crop plants. In vitro Cell. Dev. Biol.-Plant. 44, 457–467.
- Srivastava V., Gidoni D. (2010) Site-specific gene integration technologies for crop improvement. In vitro Cell. Dev. Biol.-Plant. 46, 219–232.
- Turan S., Zehe C., Kuehle J., Qiao J., Bode J. (2013) Recombinase-mediated cassette exchange (RMCE) – a rapidly-expanding toolbox for targeted genomic modifications. Gene. 515, 1–27.
- Thomson J.G., Blechl A. (2015) Recombinase technology for precise genome engineering. In: Advances in new technology for targeted modification of plant genomes. Eds F. Zhang, H. Puchta, J.G. Thomson. N. Y.: Springer, pp. 113–144.
- Qamar Z., Rizwan M., Rani R., Shahzad R., Jami S., Faheem M., Shimelis H. (2024) Trends towards the production of biologically safe marker-free transgenic plants. Appl. Ecol. Environ. Res. 22, 221–247.
- Nanto K., Ebinuma H. (2008) Marker-free site-specific integration plants. Transgenic Res. 17, 337–344.
- Louwerse J.D., van Lier M.C., van der Steen D.M., de Vlaam C.M., Hooykaas P.J., Vergunst A.C. (2007) Stable recombinase-mediated cassette exchange in Arabidopsis using Agrobacterium tumefaciens. Plant Physiol. 145, 1282–1293.
- Baszczynski C.L., Gordon-Kamm W.J., Lyznik L.A., Peterson D.J., Zhao Z.Y. (2003) Site-specific recombinases and their uses for targeted gene manipulation in plant systems. In: Transgenic plants: current innovations and future trends. Ed Stewart Jr. C.N. Wymondham: Horizon, pp. 157–178.
- Li Z., Moon B.P., Xing A., Liu Z.B., McCardell R.P., Damude H.G., Falco S.C. (2010) Stacking multiple transgenes at a selected genomic site via repeated recombinase-mediated DNA cassette exchanges. Plant Physiol. 154, 622–631.
- Lauth M., Spreafico F., Dethleffsen K., Meyer M. (2002) Stable and efficient cassette exchange under non-selectable conditions by combined use of two site-specific recombinases. Nucl. Acids Res. 30, e115.
- De Paepe A., De Buck S., Nolf J., Van Lerberge E., Depicker A. (2013) Site-specific T–DNA integration in Arabidopsis thaliana mediated by the combined action of CRE recombinase and ϕC31 integrase. Plant J. 75, 172–184.
- Huang J., Zhou W., Dong W., Watson A.M., Hong Y. (2009) Directed, efficient, and versatile modifications of the Drosophila genome by genomic engineering. Proc. Natl. Acad. Sci. USA. 106, 8284–8289.
- Sadelain M., Papapetrou E.P., Bushman F.D. (2012) Safe harbours for the integration of new DNA in the human genome. Nat. Rev. Cancer. 12, 51–58.
- Dong O.X., Yu S., Jain R., Zhang N., Duong P.Q., Butler C., Li Y., Lipzen A., Martin J.A., Barry K.W., Schmutz J., Tian L., Ronald P.C. (2020) Marker-free carotenoid-enriched rice generated through targeted gene insertion using CRISPR-Cas9. Nat. Commun. 11, 1178.
- Xu J., PerezSanchez P., Sadravi S. (2025) Unlocking the full potential of plant cell-based production for valuable proteins: challenges and innovative strategies. Biotechnol. Adv. 79, 108526.
- Kito M., Itami S., Fukano Y., Yamana K., Shibui T. (2002) Construction of engineered CHO strains for high-level production of recombinant proteins. Appl. Microbiol. Biotechnol. 60, 442–448.
- Baumann M., Gludovacz E., Sealover N., Bahr S., George H., Lin N., Kayser K., Borth N. (2017) Preselection of recombinant gene integration sites enabling high transcription rates in CHO cells using alternate start codons and recombinase mediated cassette exchange. Biotechnol. Bioengin. 114, 2616–2627.
- Srivastava V., Thomson J. (2016) Gene stacking by recombinases. Plant Biotechnol. J. 14, 471–482.
- Anzalone A.V., Randolph P.B., Davis J.R., Sousa A.A., Koblan L.W., Levy J.M., Chen P.J., Wilson C., Newby G.A., Raguram A., Liu D.R. (2019) Search-and-replace genome editing without double-strand breaks or donor DNA. Nature. 576, 149–157.
- Jiang Y.Y., Chai Y.P., Lu M.H., Han X.L., Lin Q., Zhang Y., Zhang Q., Zhou Y., Wang X.C., Gao C., Chen Q.J. (2020) Prime editing efficiently generates W542L and S621I double mutations in two ALS genes in maize. Genome Biol. 21, 1–10.
- Tingting L., Jinpeng Z., Xi Y., Kejian W., Yuchun R., Chun W. (2023) Development and application of prime editing in plants. Rice Sci. 30, 509–522.
- Sun C., Lei Y., Li B., Gao Q., Li Y., Cao W., Yang C., Li H., Wang Z., Li Y., Wang Y., Liu J., Zhau K.T., Gao C. (2023) Precise integration of large DNA sequences in plant genomes using PrimeRoot editors. Nat. Biotechnol. 42, 316–327.
- Anzalone A.V., Gao X.D., Podracky C.J., Nelson A.T., Koblan L.W., Raguram A., Levy J.M., Merser J.A.M., Liu D.R. (2022) Programmable deletion, replacement, integration and inversion of large DNA sequences with twin prime editing. Nat. Biotechnol. 40, 731–740.
- Yarnall M.T., Ioannidi E.I., Schmitt-Ulms C., Krajeski R.N., Lim J., Villiger L., Gootenberg J.S. (2023) Drag-and-drop genome insertion of large sequences without double-strand DNA cleavage using CRISPRdirected integrases. Nat. Biotechnol. 41, 500–512.
- Peng T., Sun X., Mumm R.H. (2014) Optimized breeding strategies for multiple trait integration: I. Minimizing linkage drag in single event introgression. Mol. Breeding. 33, 89–104.
- Que Q., Chilton M.D.M., de Fontes C.M., He C., Nuccio M., Zhu T., Wu Y., Chen J.S., Shi, L. (2010) Trait stacking in transgenic crops: challenges and opportunities. GM crops. 1, 220–229.
- Li Y., Li R., Han Z., Wang H., Zhou S., Li Y., Wang Y., Ow D.W. (2022) Recombinase-mediated gene stacking in cotton. Plant Physiol. 188, 1852–1865.
- Gao H., Mutti J., Young J.K., Yang M., Schroder M., Lenderts B., Wang L., Peterson D., Clair G.S., Jones S., Chilcoat N.D. (2020) Complex trait loci in maize enabled by CRISPR-Cas9 mediated gene insertion. Front. Plant Sci. 11, 535.
- Li W. (2025) Chromosome engineering: technologies, applications, and challenges. Annu. Rev. Anim. Biosci. 13, 25–47.
- Liu Y., Liu Q., Yi C., Liu C., Shi Q., Wang M., Han F. (2025) Past innovations and future possibilities in plant chromosome engineering. Plant Biotechnol. J. 23, 695–708.
- Murata M. (2014) Minichromosomes and artificial chromosomes in Arabidopsis. Chromosom. Res. 22, 167–178.
- Zhou J., Liu Y., Guo X., Birchler J.A., Han F., Su H. (2022) Centromeres: from chromosome biology to biotechnology applications and synthetic genomes in plants. Plant Biotechnol. J. 20, 2051–2063.
- Dawe R.K., Gent J.I., Zeng Y., Zhang H., Fu F.F., Swentowsky K.W., Kim D.W., Wang N., Liu J., Piri R.D. (2023) Synthetic maize centromeres transmit chromosomes across generations. Nat. Plants. 9, 433–441.
- Kan M., Huang T. Zhao P. (2022) Artificial chromosome technology and its potential application in plants. Front. Plant Sci. 13, 970943.
- Peters J.E., Makarova K.S., Shmakov S., Koonin E.V. (2017) Recruitment of CRISPR-Cas systems by Tn7-like transposons. Proc. Natl. Acad. Sci. USA. 114, E7358–E7366.
- Strecker J., Ladha A., Gardner Z., Schmid-Burgk J.L., Makarova K.S., Koonin E.V., Zhang F. (2019) RNA-guided DNA insertion with CRISPR-associated transposases. Science. 365, 48–53.
- Karvelis T., Druteika G., Bigelyte G., Budre K., Zedaveinyte R., Silanskas A., Kazlauskas D., Venclovas C., Siksnys V. (2021) Transposon-associated TnpB is a programmable RNA-guided DNA endonuclease. Nature. 599, 692–696.
- Saito M., Xu P., Faure G., Maguire S., Kannan S., Altae-Tran H., Vo S., Desimone A., Macrae R.K., Zhang F. (2023) Fanzor is a eukaryotic programmable RNA-guided endonuclease. Nature. 620, 660–668.
- Tossolini I., Mencia R., Arce A.L., Manavella P.A. (2025) The genome awakens: transposon-mediated gene regulation. Trends Plant Sci. TRPLSC 2791. https://doi.org/10.1016/j.tplants.2025.02.005
- Vo P.L.H., Ronda C., Klompe S.E., Chen E.E., Acree C., Wang H.H., Sternberg S.H. (2021) CRISPR RNA-guided integrases for high-efficiency, multiplexed bacterial genome engineering. Nat. Biotechnol. 39, 480–489.
- Chang C.W., Truong V.A., Pham N.N., Hu Y.C. (2024) RNA-guided genome engineering: paradigm shift towards transposons. Trends Biotechnol. 42, 970–985.
- Strecker J., Ladha A., Makarova K.S., Koonin E.V., Zhang F. (2020) Response to comment on "RNA-guided DNA insertion with CRISPR-associated transposases". Science. 368, eabb2920.
- Vo P.L.H., Acree C., Smith M.L., Sternberg S.H. (2021) Unbiased profiling of CRISPR RNA-guided transposition products by long-read sequencing. Mob. DNA. 12, 13.
- Tou C.J., Orr B., Kleinstiver B.P. (2023) Precise cut-and-paste DNA insertion using engineered type VK CRISPR-associated transposases. Nat. Biotechnol. 41, 968–979.
- Klompe S.E., Vo P.L., Halpin-Healy T.S., Sternberg S.H. (2019) Transposon-encoded CRISPR–Cas systems direct RNA-guided DNA integration. Nature. 571, 219–225.
- Wimmer F., Mougiakos I., Englert F., Beisel C.L. (2022) Rapid cell-free characterization of multi-subunit CRISPR effectors and transposons. Mol. Cell. 82, 1210–1224.
- Saito M., Ladha A., Strecker J., Faure G., Neumann E., Altae-Tran H., Macrae R.K., Zhang F. (2021) Dual modes of CRISPR-associated transposon homing. Cell. 184, 2441–2453.
- Zhang Y., Sun X., Wang Q., Xu J., Dong F., Yang S., Yang J., Zhang Z., Qian Y., Chen J., Zhang J., Liu Y., Tao R., Jiang Y., Yang J., Yang S. (2020) Multicopy chromosomal integration using CRISPR-associated transposases. ACS Synth. Biol. 9, 1998–2008.
- Yang S., Zhang Y., Xu J., Zhang J., Zhang J., Yang J., Jiang Y., Yang S. (2021) Orthogonal CRISPR-associated transposases for parallel and multiplexed chromosomal integration. Nucl. Acids Res. 49, 10192–10202.
- Vo P.L.H., Ronda C., Klompe S.E., Chen E.E., Acree C., Wang H.H., Sternberg S.H. (2021) CRISPR RNA-guided integrases for high-efficiency, multiplexed bacterial genome engineering. Nat. Biotechnol. 39, 480–489.
- Peters J.E. (2019) Targeted transposition with Tn7 elements: safe sites, mobile plasmids, CRISPR/Cas and beyond. Mol. Microbiol. 112, 1635–1644.
- Altae-Tran H., Kannan S., Demircioglu F.E., Oshiro R., Nety S.P., McKay L.J., Dlakic M., Inskeep W.P., Makarova K.S., Zhang F. (2021) The widespread IS200/IS605 transposon family encodes diverse programmable RNA-guided endonucleases. Science. 374, 57–65.
- Karvelis T., Druteika G., Bigelyte G., Budre K., Zedaveinyte R., Silanskas A., Kazlauskas D., Venclovas C., Siksnys V. (2021) Transposon-associated TnpB is a programmable RNA-guided DNA endonuclease. Nature. 599, 692–696.
- Xiang G., Li Y., Sun J., Huo Y., Cao S., Cao Y., Guo Y., Yang L., Cai Y., Zhang Y.E., Wang H. (2024) Evolutionary mining and functional characterization of TnpB nucleases identify efficient miniature genome editors. Nat. Biotechnol. 42, 745–757.
- Sasnauskas G., Tamulaitiene G., Druteika G., Carabias A., Silanskas A., Kazlauskas D., Venclovas C., Montoya G., Karvelis T., Siksnys V. (2023) TnpB structure reveals minimal functional core of Cas12 nuclease family. Nature. 616, 384–389.
- Bao W., Jurka J. (2013) Homologues of bacterial TnpB_IS605 are widespread in diverse eukaryotic transposable elements. Mobile DNA. 4, 12.
- Yoon P.H., Skopintsev P., Shi H., Chen L., Adler B.A., Al-Shimary M., Doudna J.A. (2023) Eukaryotic RNA-guided endonucleases evolved from a unique clade of bacterial enzymes. Nucl. Acids Res. 51, 12414–12427.
- Jiang K., Lim J., Sgrizzi S., Trinh M., Kayabolen A., Yutin N., Bao W., Kato K., Koonin E.V., Abudayyeh O.O. (2023) Programmable RNA-guided DNA endonucleases are widespread in eukaryotes and their viruses. Sci. Adv. 9, eadk0171.
- Tenjo-Castaño F., Montoya G., Carabias A. (2022) Transposons and CRISPR: rewiring gene editing. Biochemistry. 62, 3521–3532.
- Liu P., Panda K., Edwards S.A., Swanson R., Yi H., Pandesha P., Hung Y.-H., Klaas G., Ye H., Collins M.V., Slotkin R.K. (2024) Transposase-assisted target-site integration for efficient plant genome engineering. Nature. 631, 593–600.
- Iyer L.M., Koonin E.V., Aravind L. (2002) Classification and evolutionary history of the single-strand annealing proteins, RecT, Redbeta, ERF and RAD52. BMC Genomics. 3, 1–11.
- Court D.L., Sawitzke J.A., Tomason L.C. (2002) Genetic engineering using homologous recombination. Annu. Rev. Genet. V. 36, 361–388.
- Wang C., Cheng J.K., Zhang Q., Hughes N.W., Xia Q., Winslow M.M., Cong L. (2021) Microbial single-strand annealing proteins enable CRISPR gene-editing tools with improved knock-in efficiencies and reduced off-target effects. Nucl. Acids Res. 49, e36.
- Wang C., Qu Y., Cheng J.K., Hughes N.W., Zhang Q., Wang M., Cong L. (2022) dCas9-based gene editing for cleavage-free genomic knock-in of long sequences. Nat. Cell Biol. 24, 268–278.
- Jones D., Unoson C., Leroy P., Curic V., Elf J. (2017) Kinetics of dCas9 target search in Escherichia coli. Biophys. J. 112, 314a.
- Tomason L.C., Costantino N., Court D.L. (2016) Examining a DNA replication requirement for bacteriophage λ Redand Rac prophage RecET-promoted recombination in Escherichia coli. mBio. 7, e01443–16.
Supplementary files

