ВЛИЯНИЕ ИНГИБИТОРА ГИСТОН-ЛИЗИН-МЕТИЛТРАНСФЕРАЗЫ G9a НА ПРОДОЛЖИТЕЛЬНОСТЬ ЖИЗНИ И РАДИОУСТОЙЧИВОСТЬ Drosophila melanogaster
- Авторы: Тимушева Н.С1, Шапошников М.В1, Прошкина Е.Н1, Москалев А.А2
-
Учреждения:
- Институт биологии Коми научного центра Уральского отделения Российской академии наук
- Институт долголетия с клиникой реабилитации и превентивной медицины Российского научного центра хирургии им. академика Б.В. Петровского
- Выпуск: Том 59, № 6 (2025)
- Страницы: 957–970
- Раздел: МОЛЕКУЛЯРНАЯ БИОЛОГИЯ КЛЕТКИ
- URL: https://medbiosci.ru/0026-8984/article/view/358229
- DOI: https://doi.org/10.7868/S3034555325060061
- ID: 358229
Цитировать
Аннотация
Гистон-лизин-метилтрансфераза G9a играет важную роль в регуляции транскрипции различных генов и клеточных процессов, однако ее участие в детерминации старения и радиоустойчивости организма недостаточно изучено. В данной работе анализировали влияние селективного ингибитора G9a – UNC0646 – на продолжительность жизни особей Drosophila melanogaster и их устойчивость к действию γ-излучения и параквата. UNC0646 в концентрации 0.1–100 мкмоль/л оказывал геропротекторное действие на самок дрозофилы, вызвав увеличение средней продолжительности жизни на 1.6–13.9% (p < 0.05). В то же время у дрозофил, получавших UNC0646 в течение 2 недель, наблюдалось снижение устойчивости к γ-излучению. Положительное влияние UNC0646 на продолжительность жизни самок может быть обусловлено активацией генов ответа на повреждение ДНК и репарации ДНК (D-Gadd45, mei-9, spn-B, Ku80) и генов протеостаза (Hsp27, Hsp68, Atg1, Ire1).
Об авторах
Н. С Тимушева
Институт биологии Коми научного центра Уральского отделения Российской академии наук
Email: proshkina.e.n@ib.komisc.ru
Сыктывкар, Россия
М. В Шапошников
Институт биологии Коми научного центра Уральского отделения Российской академии наук
Автор, ответственный за переписку.
Email: proshkina.e.n@ib.komisc.ru
Сыктывкар, Россия
Е. Н Прошкина
Институт биологии Коми научного центра Уральского отделения Российской академии наук
Email: proshkina.e.n@ib.komisc.ru
Сыктывкар, Россия
А. А Москалев
Институт долголетия с клиникой реабилитации и превентивной медицины Российского научного центра хирургии им. академика Б.В. Петровского
Email: amoskalev@list.ru
Москва, Россия
Список литературы
- da Costa J.P., Vitorino R., Silva G.M., Vogel C., Duarte A.C., Rocha-Santos T. (2016) A synopsis on aging-Theories, mechanisms and future prospects. Ageing Res. Rev. 29, 90–112.
- Прошкина Е.Н., Соловьёв И.А., Шапошников М.В., Москалев А.А. (2020) Ключевые молекулярные механизмы старения, биомаркеры и потенциальные интервенции. Молекуляр. биология. 54, 883–921.
- Wang K., Liu H., Hu Q., Wang L., Liu J., Zheng Z., Zhang W., Ren J., Zhu F., Liu G.H. (2022) Epigenetic regulation of aging: implications for interventions of aging and diseases. Signal Transduct. Target Ther. 7, 374.
- Kouzarides T. (2007) Chromatin modifications and their function. Cell. 128, 693–705.
- Zhang Y., Sun Z., Jia J., Du T., Zhang N., Tang Y., Fang Y., Fang D. (2021) Overview of histone modification. Histone Mutations Cancer. 1283, 1–16.
- Soto-Palma C., Niedernhofer L.J., Faulk C.D., Dong X. (2022) Epigenetics, DNA damage, and aging. J. Clin. Invest. 132, e158446.
- Sidler C., Kovalchuk O., Kovalchuk I. (2017) Epigenetic regulation of cellular senescence and aging. Front. Genet. 8, 138.
- Shinkai Y., Tachibana M. (2011) H3K9 methyltransferase G9a and the related molecule GLP. Genes. Dev. 25, 781–788.
- Poulard C., Noureddine L.M., Pruvost L., Le Romancer M. (2021) Structure, activity, and function of the protein lysine methyltransferase G9a. Life (Basel). 11, 1082.
- Bellver-Sanchis A., Ribalta-Vilella M., Irisarri A., Gehlot P., Choudhary B.S., Jana A., Vyas V.K., Banerjee D.R., Pallas M., Guerrero A., Grifan-Ferre C. (2025) G9a an epigenetic therapeutic strategy for neurodegenerative conditions: from target discovery to clinical trials. Med. Res. Rev. 45, 985–1015.
- Bellver-Sanchis A., Geng Q., Navarro G., Avila-López P.A., Companys-Alemany J., Marsal-García L., Larramona-Arcas R., Miró L., Perez-Bosque A., Ortuno-Sahagún D., Banerjee D.R., Choudhary B.S., Soriano F.X., Poulard C., Pallas M., Du H.N., Grifan-Ferre C. (2024) G9a Inhibition promotes neuroprotection through GMFB regulation in Alzheimer's disease. Aging Dis. 15, 311–337.
- Wei L., Chiu D.K., Tsang F.H., Law C.T., Cheng C.L., Au S.L., Lee J.M., Wong C.C., Ng I.O., Wong C.M. (2017) Histone methyltransferase G9a promotes liver cancer development by epigenetic silencing of tumor suppressor gene RARRES3. J. Hepatol. 67, 758–769.
- Wang Y.F., Zhang J., Su Y., Shen Y.Y., Jiang D.X., Hou Y.Y., Geng M.Y., Ding J., Chen Y. (2017) G9a regulates breast cancer growth by modulating iron homeostasis through the repression of ferroxidase hephaestin. Nat. Commun. 8, 274.
- Chen G., Yu X., Zhang M., Zheng A., Wang Z., Zuo Y., Liang Q., Jiang D., Chen Y., Zhao L., Jiang L., Li D., Liao S. (2019) Inhibition of euchromatic histone lysine methyltransferase 2 (EHMT2) suppresses the proliferation and invasion of cervical cancer cells. Cytogenet. Genome Res. 158, 205–212.
- Ma W., Han C., Zhang J., Song K., Chen W., Kwon H., Wu T. (2020) The histone methyltransferase G9a promotes cholangiocarcinogenesis through regulation of the hippo pathway kinase LATS2 and YAP signaling pathway. Hepatology. 72, 1283–1297.
- Dang N.N., Jiao J., Meng X., An Y., Han C., Huang S. (2020). Abnormal overexpression of G9a in melanoma cells promotes cancer progression via upregulation of the Notch1 signaling pathway. Aging (Albany NY). 12, 2393–2407.
- Zhang X.Y., Rajagopalan D., Chung T.H., Hooi L., Toh T.B., Tian J.S., Rashid M., Sahib N., Gu M., Lim J.J., Wang W., Chng W.J., Jia S., Chow E.K. (2020) Frequent upregulation of G9a promotes ReIB-dependent proliferation and survival in multiple myeloma. Exp. Hematol. Oncol. 9, 8.
- Chen P., Qian Q., Zhu Z., Shen X., Yu S., Yu Z., Sun R., Li Y., Guo D., Fan H. (2020) Increased expression of EHMT2 associated with H3K9me2 level contributes to the poor prognosis of gastric cancer. Oncol. Lett. 20, 1734–1742.
- Chen H., Yan Y., Davidson T.L., Shinkai Y., Costa M. (2006) Hypoxic stress induces dimethylated histone H3 lysine 9 through histone methyltransferase G9a in mammalian cells. Cancer Res. 66, 9009–9016.
- Kim Y., Kim Y.S., Kim D.E., Lee J.S., Song J.H., Kim H.G., Cho D.H., Jeong S.Y., Jin D.H., Jang S.J., Seol H.S., Suh Y.A., Lee S.J., Kim C.S., Koh J.Y., Hwang J.J. (2013) BIX-01294 induces autophagy-associated cell death via EHMT2/G9a dysfunction and intracellular reactive oxygen species production. Autophagy. 9, 2126–2139.
- Liu F., Chen X., Allali-Hassani A., Quinn A.M., Wasney G.A., Dong A., Barsyte D., Kozieradzki I., Senisterra G., Chau I., Siarheyeva A., Kireev D.B., Jadhav A., Herold J.M., Frye S.V., Arrowsmith C.H., Brown P.J., Simeonov A., Vedadi M., Jin J. (2009) Discovery of a 2,4-diamino-7-aminoalkoxyquinazoline as a potent and selective inhibitor of histone lysine methyltransferase G9a. J. Med. Chem. 52, 7950–7953.
- Liu F., Barsyte-Lovejoy D., Allali-Hassani A., He Y., Herold J.M., Chen X., Yates C.M., Frye S.V., Brown P.J., Huang J., Vedadi M., Arrowsmith C.H., Jin J. (2011) Optimization of cellular activity of G9a inhibitors 7-aminoalkoxy-quinazolines. J. Med. Chem. 54, 6139–6150.
- Grifan-Ferré C., Marsal-García L., Bellver-Sanchis A., Kondengaden S.M., Turga R.C., Vázquez S., Pallás M. (2019) Pharmacological inhibition of G9a/GLP restores cognition and reduces oxidative stress, neuroinflammation and β-amyloid plaques in an early-onset Alzheimer's disease mouse model. Aging (Albany NY). 11, 11591–11608.
- Cabreiro F., Au C., Leung K.Y., Vergara-Irigaray N., Cochene H.M., Noori T., Weinkove D., Schuster E., Greene N.D., Gems D. (2013) Metformin retards aging in C. elegans by altering microbial folate and methionine metabolism. Cell. 153, 228–239.
- Gong H., Qian H., Eril R., Astle C.M., Wang G.G., Harrison D.E., Xu X. (2015) Histone modifications change with age, dietary restriction and rapamycin treatment in mouse brain. Oncotarget. 6, 15882–15890.
- Hassan F.U., Rehman M.S., Khan M.S., Ali M.A., Javed A., Nawaz A., Yang C. (2019) Curcumin as an alternative epigenetic modulator: mechanism of action and potential effects. Front. Genet. 10, 514.
- Tran P.V., Kennedy B.C., Lien Y.C., Simmons R.A., Georgieff M.K. (2015) Fetal iron deficiency induces chromatin remodeling at the BDNF locus in adult rat hippocampus. Am. J. Physiol. Regul. Integr. Comp. Physiol. 308, R276–R282.
- Xia B., de Belle J.S. (2016) Transgenerational programming of longevity and reproduction by post-eclosion dietary manipulation in Drosophila. Aging (Albany NY). 8, 1115–1134.
- Cvetković V.J.M., Jovanovic T.L., Stamenković B., Todorović S.S., Dordević M., Radulović N.M. (2015) Toxicity of dimethyl sulfoxide against Drosophila melanogaster. Biol Nyssana. 6, 91–95.
- Landis G.N., Doherty D., Tower J. (2020) Analysis of Drosophila melanogaster lifespan. Meth. Mol. Biol. 2144, 47–56.
- Hilton J.F., Mehta C.R., Patel N.R. (1994) An algorithm for conducting exact Smirnov tests. Comput. Statistics & Data Analysis. 17, 351–361.
- Mantel N. (1966) Evaluation of survival data and two new rank order statistics arising in its consideration. Cancer Chemother. Rep. 50, 163–170.
- Han S.K., Kwon H.C., Yang J.S., Kim S., Lee S.V. (2024) OASIS portable: user-friendly offline suite for secure survival analysis. Mol. Cells. 47, 100011.
- Wang C., Li Q., Redden D.T., Weindruch R., Allison D.B. (2004) Statistical methods for testing effects on “maximum lifespan”. Mech. Ageing Dev. 125, 629–632.
- Yang J.S., Nam H.J., Seo M., Han S.K., Choi Y., Nam H.G., Lee S.J., Kim S. (2011) OASIS: online application for the survival analysis of lifespan assays performed in aging research. PLoS One. 6, e23525.
- Patthankar J.G., Decksha K., Patil R.K. (2017) Gamma radiation tolerance in different life stages of the fruit fly Drosophila melanogaster. Int. J. Radiat Biol. 93, 440–448.
- Livak K.J., Schmittgen T.D. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCT Method. Methods. 25, 402–408.
- Gu M., Toh T.B., Hooi L., Lim J.J., Zhang X., Chow E.K. (2019) Nanodiamond-mediated delivery of a G9a inhibitor for hepatocellular carcinoma therapy. ACS Appl. Mater. Interfaces. 11, 45427–45441.
- Mis J., Ner S.S., Grigliatti T.A. (2006) Identification of three histone methyltransferases in Drosophila: dG9a is a suppressor of PEV and is required for gene silencing. Mol. Genet. Genomics. 275, 513–526.
- Jang J.E., Eom J.-I., Jeung H.-K., Chung H., Kim Y.R., Kim J.S., Cheong J.-W., Min Y.H. (2020) PERK/NRF2 and autophagy form a resistance mechanism against G9a inhibition in leukemia stem cells. J. Exp. Clin. Cancer Res. 39, 66.
- Yang Q., Zhu Q., Lu X., Du Y., Cao L., Shen C., Hou T., Li M., Li Z., Liu C., Wu D., Xu X., Wang L., Wang H., Zhao Y., Yang Y., Zhu W.G. (2017) G9a coordinates with the RPA complex to promote DNA damage repair and cell survival. Proc. Natl. Acad. Sci. USA. 114, E6054–E6063.
- Feng T., Wang H., Zhang X., Sun H., You Q. (2014) The discovery of novel histone lysine methyltransferase G9a inhibitors (part I): molecular design based on a series of substituted 2,4-diamino-7-aminoalkoxyquinazoline by molecular-docking-guided 3D quantitative structure-activity relationship studies. Med. Chem. 10, 426–440.
- Chae Y.C., Kim J.Y., Park J.W., Kim K.B., Oh H., Lee K.H., Seo S.B. (2019) FOXO1 degradation via G9a-mediated methylation promotes cell proliferation in colon cancer. Nucl. Acids Res. 47, 1692–1705.
- Shen J., Curtis C., Tavare S., Tower J. (2009) A screen of apoptosis and senescence regulatory genes for life span effects when over-expressed in Drosophila. Aging (Albany NY). 1, 191–211.
- Manola M.S., Gumeni S., Trougakos I.P. (2021) Differential doseand tissue-dependent effects of FOXO on aging, metabolic and proteostatic pathways. Cells. 10, 3577.
- Li F., Zeng J., Gao Y., Guan Z., Ma Z., Shi Q., Du C., Jia J., Xu S., Wang X., Chang L., He D., Guo P. (2015) G9a inhibition induces autophagic cell death via AMPK/mTOR pathway in bladder transitional cell carcinoma. PLoS One. 10, e0138390.
- Mannick J.B., Lamming D.W. (2023) Targeting the biology of aging with mTOR inhibitors. Nat. Aging. 3, 642–660.
- Pattingre S., Espert L., Biard-Piechaczyk M., Codogno P. (2008) Regulation of macroautophagy by mTOR and Beclin 1 complexes. Biochimie. 90, 313–323.
- Meares G.P., Hughes K.J., Naatz A., Papa F.R., Urano F., Hansen P.A., Benveniste E.N., Corbett J.A. (2011) IRE1-dependent activation of AMPK in response to nitric oxide. Mol. Cell Biol. 31, 4286–4297.
- Bellver-Sanchis A., Ávila-López P.A., Tic I., Valle-García D., Ribalta-Vilella M., Labrador L., Banerjee D.R., Guerrero A., Casadesus G., Poulard C., Pallas M., Griffán-Ferré C. (2024) Neuroprotective effects of G9a inhibition through modulation of peroxisome-proliferator activator receptor gamma-dependent pathways by miR-128. Neural. Regen. Res. 19, 2532–2542.
- Han J.L.T., Pang K.K.L., Ang S.R.X., Sharma M., Sajikumar S. (2021) Inhibition of lysine methyltransferase G9a/GLP reinstates long-term synaptic plasticity and synaptic tagging/capture by facilitating protein synthesis in the hippocampal CA1 area of APP/PS1 mouse model of Alzheimer's disease. Transl. Neurodegener. 10, 23.
- Miller R.A., Harrison D.E., Astle C.M., Fernandez E., Flurkey K., Han M., Javors M.A., Li X., Nadon N.L., Nelson J.F., Pletcher S., Salmon A.B., Sharp Z.D., Van Roekel S., Winkleman L., Strong R. (2014) Rapamycin-mediated lifespan increase in mice is dose and sex dependent and metabolically distinct from dietary restriction. Aging Cell. 13, 468–477.
- Fischer K.E., Gelfond J.A., Soto V.Y., Han C., Someya S., Richardson A., Austad S.N. (2015) Health effects of long-term rapamycin treatment: the impact on mouse health of enteric rapamycin treatment from four months of age throughout life. PLoS One. 10, e0126644.
- Aceves-Aparicio E., Pérez-Staples D., Arredondo J., Corona-Morales A., Morales-Mávil J., Díaz-Fleischer F. (2021) Combined effects of methoprene and metformin on reproduction, longevity, and stress resistance in Anastrepha ludens (Diptera: Tephritidae): implications for the sterile insect technique. J. Econ. Entomol. 114, 142–151.
- Zhu Y., Engmann M., Medina D., Han X., Das P., Bartke A., Ellsworth B.S., Yuan R. (2024) Metformin treatment of juvenile mice alters aging-related developmental and metabolic phenotypes in sex-dependent and sex-independent manners. Geroscience. 46, 3197–3218.
- Brivio E., Lopez J.P., Chen A. (2020) Sex differences: transcriptional signatures of stress exposure in male and female brains. Genes. Brain Behav. 19, e12643.
- Shaposhnikov M.V., Zemskaya N.V., Koval L.A., Schegoleva E.V., Zhavoronkov A., Moskalev A.A. (2018) Effects of N-acetyl-L-cysteine on lifespan, locomotor activity and stress-resistance of 3 Drosophila species with different lifespans. Aging (Albany NY). 10, 2428–2458.
- Zhikrevetskaya S., Peregudova D., Danilov A., Plyusnina E., Krasnov G., Dmitriev A., Kudryavtseva A., Shaposhnikov M., Moskalev A. (2015) Effect of low doses (5-40 cGy) of gamma-irradiation on lifespan and stress-related genes expression profile in Drosophila melanogaster. PLoS One. 10, e0133840.
- Seira O., Wang W., Lee S., Roskams J., Tetzlaff W. (2020) HDAC inhibition leads to age-dependent opposite regenerative effect upon PTEN deletion in rubrospinal axons after SCI. Neurobiol. Aging. 90, 99–109.
- Bashir B., Gulati M., Vishwas S., Gupta G., Dhanasekaran M., Paudel K.R., Chellappan D.K., Anand K., Negi P., Singh P.K., Rajput A., Dua K., Singh S.K. (2025) Bridging gap in the treatment of Alzheimer’s disease via postbiotics: current practices and future prospects. Ageing Res. Rev. 105, 102689.
- Riahi H., Fenckova M., Goruk K.J., Schenck A., Kramer J.M. (2021) The epigenetic regulator G9a attenuates stress-induced resistance and metabolic transcriptional programs across different stressors and species. BMC Biol. 19, 112.
- Poetsch A.R. (2020) The genomics of oxidative DNA damage, repair, and resulting mutagenesis. Comput. Struct. Biotechnol. J. 18, 207–219.
- Ginjala V., Rodríguez-Colon L., Ganguly B., Gangidi P., Gallina P., Al-Hraishawi H., Kulkarni A., Tang J., Gheeya J., Simhadri S., Yao M., Xia B., Ganesan S. (2017) Protein-lysine methyltransferases G9a and GLP1 promote responses to DNA damage. Sci. Rep. 7, 16613.
- Riahi H., Brekelmans C., Foriel S., Merkling S.H., Lyons T.A., Itskov P.M., Kleefstra T., Ribeiro C., van Rij R.P., Kramer J.M., Schenck A. (2019) The histone methyltransferase G9a regulates tolerance to oxidative stress-induced energy consumption. PLoS Biol. 17, e2006146.
Дополнительные файлы


