Benzopyran Derivative Improves Synaptic Plasticity, Exploration Interest and Alleviates Amyloidogenesis and Astrogliosis in 5xFAD Mice
- Авторлар: Zernov N.1, Melenteva D.M.2, Popugaeva E.A.2
-
Мекемелер:
- Pavlov Institute of Physiology
- Peter the Great St. Petersburg Polytechnic University
- Шығарылым: Том 59, № 6 (2025)
- Беттер: 938–956
- Бөлім: МОЛЕКУЛЯРНАЯ БИОЛОГИЯ КЛЕТКИ
- URL: https://medbiosci.ru/0026-8984/article/view/358228
- DOI: https://doi.org/10.7868/S3034555325060053
- ID: 358228
Дәйексөз келтіру
Аннотация
Негізгі сөздер
Авторлар туралы
N. Zernov
Pavlov Institute of PhysiologyLaboratory of Molecular Neurobiology St. Petersburg, Russia
D. Melenteva
Peter the Great St. Petersburg Polytechnic UniversityLaboratory of Molecular Neurodegeneration St. Petersburg, Russia
E. Popugaeva
Peter the Great St. Petersburg Polytechnic University
Email: lena.popugaeva@gmail.com
Laboratory of Molecular Neurodegeneration St. Petersburg, Russia
Әдебиет тізімі
- Long J.M., Holtzman D.M. (2019) Alzheimer disease: an update on pathobiology and treatment strategies. Cell. 179, 312–339. https://doi.org/10.1016/J.CELL.2019.09.001
- Hardy J., Selkoe D.J. (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science. 297, 353–356. https://doi.org/10.1126/SCIENCE.1072994
- Haass C., Selkoe D.J. (2007) Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid β-peptide. Nat. Rev. Mol. Cell. Biol. 8, 101–112
- Selkoe D.J. (2002) Alzheimer’s disease is a synaptic failure. Science. 298, 789–791. https://doi.org/10.1126/SCIENCE.1074069
- De Strooper B., Karran E. (2016) The cellular phase of Alzheimer’s disease. Cell. 164, 603–615. https://doi.org/10.1016/J.CELL.2015.12.056
- Jack C.R., Knopman D.S., Jagust W.J., Shaw L.M., Aisen P.S., Weiner M.W., Petersen R.C., Trojanowski J.Q. (2010) Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol. 9, 119–128. https://doi.org/10.1016/S1474-4422(09)70299-6
- Musiek E.S., Holtzman D.M. (2015) Three dimensions of the amyloid hypothesis: time, space and “wingmen.” Nat. Neurosci. 18, 800–806. https://doi.org/10.1038/nn.4018
- Heneka M.T., Carson M.J., Khoury J.E., Landreth G.E., Brosseron F., Feinstein D.L., Jacobs A.H., Wyss-Coray T., Vitorica J., Ransohoff R.M., Herrup K., Frautschy S.A., Finsen B., Brown G.C., Verkhratsky A., Yamanaka K., Koistinaho J., Latz E., Halle A., Petzold G.C., Town T., Morgan D., Shinohara M.L., Perry V.H., Holmes C., Bazan N.G., Brooks D.J., Hunot S., Joseph B., Deigendesch N., Garaschuk O., Boddeke E., Dimarello C.A., Breitner J.C., Cole G.M., Golenbock D.T., Kummer M.P. (2015) Neuroinflammation in Alzheimer’s disease. Lancet Neurol. 14, 388–405. https://doi.org/10.1016/S1474-4422(15)70016-5
- Rodriguez-Vieitez E., Kumar A., Malarte M.L., Ioannou K., Rocha F.M., Chiotis K. (2024) Imaging neuroinflammation: quantification of astrocytosis in a multitracer PET approach. Meth. Mol. Biol. 2785, 195–218. https://doi.org/10.1007/978-1-0716-3774-6_13
- Guerreiro R., Wojtas A., Bras J., Carrasquillo M., Rogaeva E., Majounie E., Cruchaga C., Sassi C., Kauwe J.S.K., Younkin S., Hazrati L., Collinge J., Pocock J., Lashley T., Williams J., Lambert J.-C., Amouyel P., Goate A., Rademakers R., Morgan K., Powell J., St. George-Hyslop P., Singleton A., Hardy J. (2013) TREM2 variants in Alzheimer’s disease. N. Engl. J. Med. 368, 117–127. https://doi.org/10.1056/NEJMOA1211851
- Griciuc A., Serrano-Pozo A., Parrado A.R., Lesinski A.N., Asselin C.N., Mullin K., Hooli B., Choi S.H., Hyman B.T., Tanzi R.E. (2013) Alzheimer’s disease risk gene CD33 inhibits microglial uptake of amyloid beta. Neuron. 78, 631–643. https://doi.org/10.1016/J.NEURON.2013.04.014
- Ittner L.M., Götz J. (2010) Amyloid-β and tau – a toxic pas de deux in Alzheimer’s disease. Nat. Rev. Neuroscience. 12, 67–72. https://doi.org/10.1038/nrn2967
- Heppner F.L., Ransohoff R.M., Becher B. (2015) Immune attack: the role of inflammation in Alzheimer disease. Nat. Rev. Neuroscience. 16, 358–372. https://doi.org/10.1038/nrn3880
- Sevigny J., Chiao P., Bussière T., Weinreb P.H., Williams L., Maier M., Dunstan R., Salloway S., Chen T., Ling Y., O’Gorman J., Qian F., Arastu M., Li M., Chollate S., Brennan M.S., Quintero-Monzon O., Scannevin R.H., Arnold H.M., Engber T., Rhodes K., Ferrero J., Hang Y., Mikulski A., Grimm J., Hock C., Nitsch R.M., Sandrock A. (2016) The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease. Nature. 537, 50–56. https://doi.org/10.1038/nature19323
- van Dyck C.H., Swanson C.J., Aisen P., Bateman R.J., Chen C., Gee M., Kanekiyo M., Li D., Reyderman L., Cohen S., Froelich L., Katayama S., Sabbagh M., Vellas B., Watson D., Dhadda S., Irizarry M., Kramer L.D., Iwatsubo T. (2023) Lecanemab in early Alzheimer’s disease. N. Engl. J. Med. 388, 142–143. https://doi.org/10.1056/NEJMOA2212948
- Congdon E.E., Sigurdsson E.M. (2018) Tau-targeting therapies for Alzheimer disease. Nat. Rev. Neurol. 14, 399–415. https://doi.org/10.1038/s41582-018-0013-z
- Ulland T.K., Colonna M. (2018) TREM2 – a key player in microglial biology and Alzheimer disease. Nat. Rev. Neurol. 14, 667–675. https://doi.org/10.1038/s41582-018-0072-1
- Zhou J., Du W., Zhou K., Tai Y., Yao H., Jia Y., Ding Y., Wang Y. (2008) Critical role of TRPC6 channels in the formation of excitatory synapses. Nat. Neurosci. 11, 741–743. https://doi.org/10.1038/nn.2127
- Wang J., Lu R., Yang J., Li H., He Z., Jing N., Wang X., Wang Y. (2015) TRPC6 specifically interacts with APP to inhibit its cleavage by γ-secretase and reduce Aβ production. Nat. Commun. 6, 1–12. https://doi.org/10.1038/ncomms9876
- Tai Y., Feng S., Ge R., Du W., Zhang X., He Z., Wang Y. (2008) TRPC6 channels promote dendritic growth via the CaMKIV-CREB pathway. J. Cell. Sci. 121, 2301–2307. https://doi.org/10.1242/JCS.026906
- Hafner S., Urban N., Schaefer M. (2019) Discovery and characterization of a positive allosteric modulator of transient receptor potential canonical 6 (TRPC6) channels. Cell Calcium. 78, 26–34. https://doi.org/10.1016/J.CECA.2018.12.009
- Zernov N., Veselovsky A.V., Poroikov V.V., Melenteva D., Bolshakova A., Popugaeva E. (2022) New positive TRPC6 modulator penetrates blood–brain barrier, eliminates synaptic deficiency and restores memory deficit in 5xFAD Mice. Int. J. Mol. Sci. 23, 13552. https://doi.org/10.3390/IJMS232113552
- Zernov N., Ghamaryan V., Melenteva D., Makichyan A., Humanyan L., Popugaeva E. (2024) Discovery of a novel piperazine derivative, emp2: a selective TRPC6 activator suitable for treatment of synaptic deficiency in Alzheimer’s disease hippocampal neurons. Sci. Rep. 14, 1–15. https://doi.org/10.1038/s41598-024-73849-z
- Pádua M.S., Guil-Guerrero J.L., Lopes P.A. (2024) Behaviour hallmarks in alzheimer’s disease 5xFAD mouse model. Int. J. Mol. Sci. 25, 6766. https://doi.org/10.3390/IJMS25126766
- Zernov N., Popugaeva E. (2023) Role of neuronal TRPC6 channels in synapse development, memory formation and animal behavior. Int. J. Mol. Sci. 24, 15415. https://doi.org/10.3390/IJMS242015415
- Devi L., Ohno M. (2016) Cognitive benefits of memantine in Alzheimer’s 5xFAD model mice decline during advanced disease stages. Pharmacol. Biochem. Behav. 144, 60–66. https://doi.org/10.1016/J.PBB.2016.03.002
- Inestrosa N.C., Tapia-Rojas C., Griffith T.N., Carvajal F.J., Benito M.J., Rivera-Dietter A., Alvarez A.R., Serrano F.G., Hancke J.L., Burgos P.V., Parodi J., Varela-Nallar L. (2011) Tetrahydrohyperforin prevents cognitive deficit, Aβ deposition, tau phosphorylation and synaptotoxicity in the APPswe/PSEN1ΔE9 model of Alzheimer’s disease: a possible effect on APP processing. Transl. Psychiatry. https://doi.org/10.1038/tp.2011.19
- Klusa V., Germane S., Nöldner M., Chatterjee S.S. (2001) Hypericum extract and hyperforin: memory-enhancing properties in rodents. Pharmacopsychiatry. 34, 61–69. https://doi.org/10.1055/S-2001-15451/ID/23/BIB
- Oblak A.L., Lin P.B., Kotredes K.P., Pandey R.S., Garceau D., Williams H.M., Uyar A., O’Rourke R., O’Rourke S., Ingraham C., Bednarczyk D., Belanger M., Cope Z.A., Little G.J., Williams S.P.G., Ash C., Bleckert A., Ragan T., Logsdon B.A., Mangravite L.M., Sukoff Rizzo S.J., Territo P.R., Carter G.W., Howell G.R., Sasner M., Lamb B.T. (2021) Comprehensive evaluation of the 5XFAD mouse model for preclinical testing applications: A MODEL-AD Study. Front. Aging. Neurosci. 13, 713726. https://doi.org/10.3389/FNAGI.2021.713726/BIBTEX
- Lee M., Lee H.J., Jeong Y.J., Oh S.J., Kang K.J., Han S.J., Nam K.R., Lee Y.J., Lee K.C., Ryu Y.H., Hyun I.Y., Choi J.Y. (2019) Age dependency of mGluR5 availability in 5xFAD mice measured by PET. Neurobiol. Aging. 84, 208–216. https://doi.org/10.1016/J.NEUROBIOLAGING.2019.08.006
- Kalueff A.V., Tuohimaa P. (2004) Experimental modeling of anxiety and depression. Acta Neurobiol. Exp. (Wars) 64, 439–448. https://doi.org/10.55782/ANE-2004-1526
- Crusio W.E. (2001) Genetic dissection of mouse exploratory behaviour. Behav. Brain Res. 125, 127–132. https://doi.org/10.1016/S0166-4328(01)00280-7
- Dahlgren K.N., Manelli A.M., Blaine Stine W., Baker L.K., Krafft G.A., Ladu M.J. (2002) Oligomeric and fibrillar species of amyloid-β peptides differentially affect neuronal viability. J. Biol. Chem. 277, 32046–32053. https://doi.org/10.1074/JBC.M201750200
- Kim J.H., Choi S., Jung J.E., Roh E.J., Kim H.J. (2006) Capacitative Ca2+ entry is involved in regulating soluble amyloid precursor protein (sAPPα) release mediated by muscarinic acetylcholine receptor activation in neuroblastoma SH-SY5Y cells. J. Neurochem. 97, 245–254. https://doi.org/10.1111/J.1471-4159.2006.03734.X
- Tao R., Lu R., Wang J., Zeng S., Zhang T., Guo W., Zhang X., Cheng Q., Yue C., Wang Y., Jing N. (2020) Probing the therapeutic potential of TRPC6 for Alzheimer’s disease in live neurons from patient-specific iPSCs. J. Mol. Cell. Biol. 12, 807–816. https://doi.org/10.1093/JMCB/MJA0207
- Dinamarca M.C., Cerpa W., Garrido J., Hancke J.L., Inestrosa N.C. (2006) Hyperforin prevents β-amyloid neurotoxicity and spatial memory impairments by disaggregation of Alzheimer’s amyloid-β-deposits. Mol. Psychiatry. 11, 1032–1048. https://doi.org/10.1038/j.mp.4001866
- Wyss-Coray T., Loike J.D., Brionne T.C., Lu E., Anankov R., Yan F., Silverstein S.C., Husemann J. (2003) Adult mouse astrocytes degrade amyloid-β in vitro and in situ. Nat. Med. 9, 453–457. https://doi.org/10.1038/nm838
- Garwood C.J., Pooler A.M., Atherton J., Hanger D.P., Noble W. (2011) Astrocytes are important mediators of Aβ-induced neurotoxicity and tau phosphorylation in primary culture. Cell Death Dis. 2, e167–e167. https://doi.org/10.1038/cddis.2011.50
- Liu L., Chen M., Lin K., Xiang X., Yang J., Zheng Y., Xiong X., Zhu S. (2021) TRPC6 attenuates cortical astrocytic apoptosis and inflammation in cerebral ischemic/reperfusion injury. Front. Cell Dev. Biol. 8, 594283. https://doi.org/10.3389/FCELL.2020.594283/BIBTEX
- Singh D. (2022) Astrocytic and microglial cells as the modulators of neuroinflammation in Alzheimer’s disease. J. Neuroinflam. 19, 1–15. https://doi.org/10.1186/S12974-022-02565-0
- De Sousa R.A.L. (2022) Reactive gliosis in Alzheimer’s disease: a crucial role for cognitive impairment and memory loss. Metab. Brain Dis. 37, 851–857. https://doi.org/10.1007/S11011-022-00953-2/FIGURES/3
- Santín S., Ars E., Rossetti S., Salido E., Silva I., García-Maset R., Giménez I., Ruiz P., Mendizábal S., Nieto J.L., Peña A., Camacho J.A., Fraga G., Cobo M.A., Bernis C., Ortiz A., De Pablos A.L., Sánchez-Moreno A., Pintos G., Mirapeix E., Fernández-Llama P., Ballarin J., Torra R. (2009) TRPC6 mutational analysis in a large cohort of patients with focal segmental glomerulosclerosis. Nephrol. Dial. Transplant. 24, 3089–3096. https://doi.org/10.1093/NDT/GFP229
- Cahalan M.D. (2009) STIMulating store-operated Ca2+ entry. Nat. Cell Biol. 11, 669–677. https://doi.org/10.1038/ncb0609-669
- Woelk H., Burkard G., Grunwald J. (1994) Benefits and risks of the hypericum extract LI 160: drug monitoring study with 3250 patients. J. Geriatr. Psychiatry Neurol. 7 (1 suppl), 34–38. https://doi.org/10.1177/089198879400701510
- Khan S.U., Khan S.U., Suleman M., Khan M.U., Alsuhaibani A.M., Refat M.S., Hussain T., Ud Din M.A., Saeed S. (2024) The multifunctional TRPC6 protein: significance in the field of cardiovascular studies. Curr. Probl. Cardiol. 49, 102112. https://doi.org/10.1016/J.CPCARDIOL.2023.102112
Қосымша файлдар

