The Role of NOX2-Mediated Oxidative Stress in Initiation of Acute Amyloid Toxicity
- 作者: Osypov A.A1,2,3, Mukhina K.A2, Lyubanskaya A.D4, Nikiforova A.B1, Korchagina V.M1, Mitkevich V.A2, Popova I.Y.1,2
-
隶属关系:
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences
- Lomonosov Moscow State University
- 期: 卷 59, 编号 6 (2025)
- 页面: 971–978
- 栏目: МОЛЕКУЛЯРНАЯ БИОЛОГИЯ КЛЕТКИ
- URL: https://medbiosci.ru/0026-8984/article/view/358230
- DOI: https://doi.org/10.7868/S3034555325060076
- ID: 358230
如何引用文章
详细
作者简介
A. Osypov
Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences; Engelhardt Institute of Molecular Biology, Russian Academy of Sciences; Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of SciencesPushchino, Russia; Moscow, Russia; Moscow, Russia
K. Mukhina
Engelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscow, Russia
A. Lyubanskaya
Lomonosov Moscow State UniversityFaculty of Biology Moscow, 117485 Russia
A. Nikiforova
Institute of Theoretical and Experimental Biophysics, Russian Academy of SciencesPushchino, Russia
V. Korchagina
Institute of Theoretical and Experimental Biophysics, Russian Academy of SciencesPushchino, Russia
V. Mitkevich
Engelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscow, Russia
I. Popova
Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences; Engelhardt Institute of Molecular Biology, Russian Academy of Sciences
Email: I-Yu-Popova@yandex.ru
Pushchino, Russia; Moscow, Russia
参考
- Zilberter Y., Tabuena D.R., Zilberter M. (2023) NOX-induced oxidative stress is a primary trigger of major neurodegenerative disorders. Prog. Neurobiol. 231, 102539.
- Butterfield D.A., Halliwell B. (2019) Oxidative stress, dysfunctional glucose metabolism and Alzheimer disease. Nat. Rev. Neurosci. 20, 148–160.
- Abramov A.Y., Potapova E.V., Dremin V.V., Dunaev A.V. (2020) Interaction of oxidative stress and misfolded proteins in the mechanism of neurodegeneration. Life (Basel, Switz.). 10, 101.
- Cheignon C., Tomas M., Bonnefont-Rousselot D., Faller P., Hureau C., Collin F. (2018) Oxidative stress and the amyloid beta peptide in Alzheimer’s disease. Redox Biol. 14, 450–464.
- Piccirillo S., Magi S., Preziuso A., Serfilippi T., Cerqueni G., Orciani M., Amoroso S., Lariccia V. (2022) The hidden notes of redox balance in neurodegenerative diseases. Antioxid (Basel, Switz.). 11, 1456.
- Singh A., Kukreti R., Saso L., Kukreti S. (2019) Oxidative stress: a key modulator in neurodegenerative diseases. Mol. (Basel, Switz.). 24, 1583.
- Jomova K., Raptov R., Alomar S.Y., Alwasei S.H., Nepovimova E., Kuca K., Valko M. (2023) Reactive oxygen species, toxicity, oxidative stress, and antioxidants: chronic diseases and aging. Arch. Toxicol. 97, 2499–2574.
- Ushio-Fukai M., Ash D., Nagarkoti S., Belin de Chantemèle E.J., Fulton D.J.R., Fukai T. (2021) Interplay between reactive oxygen/reactive nitrogen species and metabolism in vascular biology and disease. Antioxid. Redox Signal. 34, 1319–1354.
- Holmström K.M., Finkel T. (2014) Cellular mechanisms and physiological consequences of redox-dependent signalling. Nat. Rev. Mol. Cell Biol. 15, 411–421.
- Sies H., Jones D.P. (2020) Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat. Rev. Mol. Cell Biol. 21, 363–383.
- Peralta D., Bronowska A.K., Morgan B., Dóka É., Van Laer K., Nagy P., Gräter F., Dick T.P. (2015) A proton relay enhances H2O2 sensitivity of GAPDH to facilitate metabolic adaptation. Nat. Chem. Biol. 11, 156–163.
- Anastasiou D., Poulogiannis G., Asara J.M., Boxer M.B., Jiang J., Shen M., Bellinger G., Sasaki A.T., Locasale J.W., Auld D.S., Thomas C.J., Vander Heiden M.G., Cantley L.C. (2011) Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses. Science. 334, 1278–1283.
- Cherkas A., Holota S., Mdzinarashvili T., Gabbianelli R., Zarkovic N. (2020) Glucose as a major antioxidant: when, what for and why it fails? Antioxid. (Basel, Switz.). 9, 140.
- Dienel G.A. (2019) Brain glucose metabolism: integration of energetics with function. Physiol. Rev. 99, 949–1045.
- Tang B.L. (2019) Neuroprotection by glucose-6-phosphate dehydrogenase and the pentose phosphate pathway. J. Cell. Biochem. 120, 14285–14295.
- Barua S., Kim J.Y., Yenari M.A., Lee J.E. (2019) The role of NOX inhibitors in neurodegenerative diseases. IBRO Rep. 7, 59–69.
- Begum R., Thota S., Abdulkadir A., Kaur G., Bagan P., Batra S. (2022) NADPH oxidase family proteins: signaling dynamics to disease management. Cell. Mol. Immunol. 19, 660–686.
- Malkov A., Popova I., Ivanov A., Jang S.-S., Yoon S.Y., Osypov A., Huang Y., Zilberter Y., Zilberter M. (2021) Aβ initiates brain hypometabolism, network dysfunction and behavioral abnormalities via NOX2-induced oxidative stress in mice. Commun. Biol. 4, 1054.
- Ma M.W., Wang J., Zhang Q., Wang R., Dhandapani K.M., Vadlamudi R.K., Brann D.W. (2017) NADPH oxidase in brain injury and neurodegenerative disorders. Mol. Neurodegener. 12, 7.
- Dohi K., Ohtaki H., Nakamachi T., Yofu S., Satoh K., Miyamoto K., Song D., Tsunawaki S., Shioda S., Aruga T. (2010) GP91phox (NOX2) in classically activated microglia exacerbates traumatic brain injury. J. Neuroinflammation. 7, 41.
- Mason H., Rai G., Kozyr A., De Jonge N., Glimiewicz E., Berg L.J., Wald G., Dorrier C., Henderson M.J., Zakharov A., Dyson T., Audley J., Pettinato A.M., Padilha E.C., Shah P., Xu X., Leto T.L., Simeonov A., Zarember K.A., McGavern D.B., Gallin J.I. (2023) Development of an improved and specific inhibitor of NADPH oxidase 2 to treat traumatic brain injury. Redox Biol. 60, 102611.
- Hansen D.V., Hanson J. E., Sheng M. (2018) Microglia in Alzheimer’s disease. J. Cell Biol. 217, 459–472.
- Sun Z., Zhang X., So K.-F., Jiang W., Chiu K. (2024) Targeting microglia in Alzheimer’s disease: pathogenesis and potential therapeutic strategies. Biomolecules. 14, 833.
- Querfurth H.W., LaFerla F.M. (2010) Alzheimer’s disease. N. Engl. J. Med. 362, 329–344.
- Hickman S., Izzy S., Sen P., Morsett L., El Khoury J. (2018) Microglia in neurodegeneration. Nat. Neurosci. 21, 1359–1369.
- Simpson D.S.A., Oliver P.L. (2020) ROS generation in microglia: understanding oxidative stress and inflammation in neurodegenerative disease. Antioxid. (Basel, Switz.). 9, 743.
- Sun E., Motolani A., Campos L., Lu T. (2022) The pivotal role of NF-κB in the pathogenesis and therapeutics of Alzheimer’s disease. Int. J. Mol. Sci. 23, 8972.
- Abramov A.Y., Duchen M.R. (2005) The role of an astrocytic NADPH oxidase in the neurotoxicity of amyloid beta peptides. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 360, 2309–2314.
- Mukhina K.A., Kechko O.I., Osypov A.A., Petrushanko I.Y., Makarov A.A., Mitkevich V.A., Popova I.Y. (2025) Short-term inhibition of NOX2 prevents the development of Aβ-induced pathology in mice. Antioxidants 14, 663.
- Potapov K.V., Platonov D.N., Belyy A.Y., Novikov M.A., Tomilov Y.V. Anashkina A.A., Mukhina K.A., Kechko O.I., Solyev P.N., Novikov R.A., Makarov A.A., Mitkevich V.A. (2025) Improved synthesis of effective 3-(indolin-6-yl)-4-(N-pyrazole-sulfonamide)-1H-pyrrolo[2,3-b] pyridine-based inhibitors of NADPH oxidase 2. Int. J. Mol. Sci. 26, 3647.
- Rueda-Carrasco J., Sokolova D., Lee S.-E., Childs T., Jurčáková N., Crowley G., De Schepper S., Ge J.Z., Lachica J.I., Toomey C.E., Freeman O.J., Hardy J., Barnes S.J., Lashley T., Stevens B., Chang S., Hong S. (2023) Microglia-synapse engulfment via PtdSer-TREM2 ameliorates neuronal hyperactivity in Alzheimer’s disease models. EMBO J. 42, e113246.
- Paxinos G., Franklin K.B.J. (2001) The Mouse Brain in Stereotaxic Coordinates. 2nd ed. San Diego: Acad. Press.
- de Flores R., La Joie R., Chetelat G. (2015). Structural imaging of hippocampal subfields in healthy aging and Alzheimer’s disease. Neuroscience. 309, 29–50.
补充文件

