Application of Multipole Decomposition for Sonic Boom Propagation Problems

Мұқаба

Дәйексөз келтіру

Толық мәтін

Аннотация

In the present work a modification of the multipole decomposition method is developed, which makes it possible to relate the overpressure distribution in the near-field of a supersonic transport (SST) with a far-field distribution, which is needed for the solution of sonic boom propagation problem from SST. A generalization of the method for solving the integral equations arising from multipole decomposition is performed. An algorithm for multipole correction of near-field overpressure signatures obtained in numerical simulations has been developed and tested.

Авторлар туралы

A. Kornyakov

Central Aerohydrodynamic Institute named after prof. N.E. Zhukovsky

Email: vit_soudakov@tsagi.ru
Russia, Zhukovsky

V. Soudakov

Central Aerohydrodynamic Institute named after prof. N.E. Zhukovsky

Хат алмасуға жауапты Автор.
Email: vit_soudakov@tsagi.ru
Russia, Zhukovsky

A. Shcheglov

Central Aerohydrodynamic Institute named after prof. N.E. Zhukovsky

Email: vit_soudakov@tsagi.ru
Russia, Zhukovsky

Әдебиет тізімі

  1. Landau L.D. On shock waves at long distances from their origin // PMM, 1945, vol. 9, no. 4, pp. 286–292. (in Russian)
  2. Yamashita R., Wutschitz L., Nikiforakis N. A full-field simulation methodology for sonic boom modelling on adaptive Cartesian cut-cell meshes // J. Comput. Phys., 2020, vol. 408, no. 109271, pp. 1–19.
  3. Chernyshev S.L. Sound Impact. Moscow: Nauka, 2011. 351 p. (in Russian)
  4. Zhilin Yu.L. On sonic boom // Uch. Zap. TsAGI, 1971, vol. 2, no. 3, pp. 1–11. (in Russian)
  5. Thomas C.L. Extrapolation of sonic boom pressure signatures by the waveform parameter method // NASA TN D-6832, 1972, 35 p.
  6. Chernyshev S.L., Gorbovskoy V.S., Kazhan А.V., Korunov А.О. Re-entry vehicle sonic boom issue: modelling and calculation results in windy atmosphere based on the augmented Burgers equation // Acta Astron., 2022, vol. 194, pp. 450–460.
  7. Maglieri D.J., Bobbitt P.J., Plotkin K.J., Shepherd K.P., Coen P.G., Richwine D.M. Sonic boom. Six decades of research // NASA-SP-2014-622, 2014, 539 p.
  8. Page J.A., Plotkin K.J. An efficient method for incorporating computational fluid dynamics into sonic boom prediction // AIAA Paper 1991-3275, 1991.
  9. George A. Reduction of sonic boom by azimuthal redistribution of overpressure // AIAA J., 1969, vol. 7, no. 2, pp. 291–297.
  10. Rallabhandi S.K., Mavris D.N. New computational procedure for incorporating computational fluid dynamics into sonic boom prediction // J. Aircraft, 2007, vol. 44, no. 6, pp. 1964–1971.
  11. Kanamori M., Makino Y., Ishikawa H. Extension of multipole analysis to laterally asymmetric flow field around supersonic flight vehicle // AIAA J., 2019, vol. 56, no. 1, pp. 191–204.
  12. Park M.A., Morgenstern J.M. Summary and statistical analysis of the first AIAA sonic boom prediction workshop // J. Aircraft, 2016, vol. 53, no. 2, pp. 578–598.
  13. Spalart P.R., Allmaras S.R. A one-equation turbulence model for aerodynamic flows // AIAA Paper 1992-0439, 1992.
  14. Fedorov A.V., Soudakov V.G., Malmuth N.D. Theoretical modeling of two-body interaction in supersonic flow // AIAA J., 2010, vol. 48, no. 2, pp. 258–266.
  15. Zhilin Yu.L., Kovalenko V.V. On the coupling of the near and far fields in the problem of a sonic boom // Uch. Zap. TsAGI, 1998, vol. XXIX, no. 3–4, pp. 111–122. (in Russian)
  16. Keller J.B. Geometrical acoustics. I. The theory of weak shock waves // J. Appl. Phys., 1954, vol. 25, no. 8, pp. 938–947.

© А.А. Корняков, В.Г. Судаков, А.С. Щеглов, 2023

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).