Integrable polynomial Hamiltonian systems and symmetric powers of plane algebraic curves
- Авторлар: Buchstaber V.M.1, Mikhailov A.V.2,3
-
Мекемелер:
- Steklov Mathematical Institute of Russian Academy of Sciences
- University of Leeds
- Centre of Integrable Systems
- Шығарылым: Том 76, № 4 (2021)
- Беттер: 37-104
- Бөлім: Articles
- URL: https://medbiosci.ru/0042-1316/article/view/133672
- DOI: https://doi.org/10.4213/rm10007
- ID: 133672
Дәйексөз келтіру
Аннотация
This survey is devoted to integrable polynomial Hamiltonian systems associated with symmetric powers of plane algebraic curves.We focus our attention on the relations (discovered by the authors) between the Stäckel systems, Novikov's equations for the $g$th stationary Korteweg–de Vries hierarchy, the Dubrovin–Novikov coordinates on the universal bundle of Jacobians of hyperelliptic curves, and new systems obtained by considering the symmetric powers of curves when the power is not equal to the genus of the curve.Bibliography: 52 titles.
Авторлар туралы
Victor Buchstaber
Steklov Mathematical Institute of Russian Academy of Sciences
Email: buchstab@mi-ras.ru
Doctor of physico-mathematical sciences, Professor
Alexander Mikhailov
University of Leeds; Centre of Integrable Systems
Email: a.v.mikhailov@leeds.ac.uk
Әдебиет тізімі
- M. Adler, J. Moser, “On a class of polynomials connected with the Korteweg–de Vries equation”, Comm. Math. Phys., 61:1 (1978), 1–30
- M. Adler, P. van Moerbeke, P. Vanhaecke, Algebraic integrability, Painleve geometry and Lie algebras, Ergeb. Math. Grenzgeb. (3), 47, Springer-Verlag, Berlin, 2004, xii+483 pp.
- В. И. Арнольд, Математические методы классической механики, 3-е изд., испр. и доп., Наука, М., 1989, 472 с.
- В. И. Арнольд, В. В. Козлов, А. И. Нейштадт, Математические аспекты классической и небесной механики, 2-е изд., перераб. и доп., Едиториал УРСС, М., 2002, 416 с.
- M. Blaszak, Wen-Xiu Ma, “Separable Hamiltonian equations on Riemann manifolds and related integrable hydrodynamic systems”, J. Geom. Phys., 47:1 (2003), 21–42
- V. M. Buchstaber, “Multidimensional sigma functions and applications”, in “Victor Enolski (1945–2019)” by E. Previato, Notices Amer. Math. Soc., 67:11 (2020), 1756–1760
- V. M. Buchstaber, V. Z. Enolskiĭ, D. V. Leĭkin, “Hyperelliptic Kleinian functions and applications”, Solitons, geometry, and topology: on the crossroad, Amer. Math. Soc. Transl. Ser. 2, 179, Adv. Math. Sci., 33, Amer. Math. Soc., Providence, RI, 1997, 1–33
- V. M. Buchstaber, V. Z. Enolskii, D. V. Leykin, “Kleinian functions, hyperelliptic Jacobians and applications”, Rev. Math. Math. Phys., 10, Part 2, Gordon and Breach, London, 1997, 3–120
- V. M. Buchstaber, V. Z. Enolski, D. V. Leykin, Multi-dimensional sigma-functions, 2012, 267 pp.
- В. М. Бухштабер, Д. В. Лейкин, “Законы сложения на якобианах плоских алгебраических кривых”, Нелинейная динамика, Сборник статей, Труды МИАН, 251, Наука, МАИК “Наука/Интерпериодика”, М., 2005, 54–126
- В. М. Бухштабер, Д. В. Лейкин, В. З. Энольский, “Рациональные аналоги абелевых функций”, Функц. анализ и его прил., 33:2 (1999), 1–15
- В. М. Бухштабер, А. В. Михайлов, “Полиномиальные гамильтоновы интегрируемые системы на симметрических степенях плоских кривых”, УМН, 73:6(444) (2018), 193–194
- V. M. Buchstaber, E. G. Rees, “The Gelfand map and symmetric products”, Selecta Math. (N. S.), 8:4 (2002), 523–535
- V. M. Buchstaber, E. G. Rees, “Frobenius $n$-homomorphisms, transfers and branched coverings”, Math. Proc. Cambridge Philos. Soc., 144:1 (2008), 1–12
- V. M. Buchstaber, S. Yu. Shorina, “The $w$-function of the KdV hierarchy”, Geometry, topology, and mathematical physics, Amer. Math. Soc. Transl. Ser. 2, 212, Adv. Math. Sci., 55, Amer. Math. Soc., Providence, RI, 2004, 41–66
- J. L. Burchnall, T. W. Chaundy, “Commutative ordinary differential operators”, Proc. London Math. Soc. (2), 21:1 (1923), 420–440
- J. L. Burchnall, T. W. Chaundy, “Commutative ordinary differential operators”, Proc. R. Soc. Lond. Ser. A, 118:780 (1928), 557–583
- Б. А. Дубровин, “Тэта-функции и нелинейные уравнения”, УМН, 36:2(218) (1981), 11–80
- Б. А. Дубровин, И. М. Кричевер, С. П. Новиков, “Интегрируемые системы. I”, Динамические системы – 4, Итоги науки и техн. Сер. Соврем. пробл. мат. Фундам. направления, 4, ВИНИТИ, М., 1985, 179–277
- Б. А. Дубpовин, С. П. Hовиков, “Периодическая задача для уравнений Кортевега–де Фриза и Штурма–Лиувилля. Их связь с алгебраической геометрией”, Докл. АН СССР, 219:3 (1974), 531–534
- Б. А. Дубровин, С. П. Новиков, “Гидродинамика слабо деформированных солитонных решеток. Дифференциальная геометрия и гамильтонова теория”, УМН, 44:6(270) (1989), 29–98
- G. Ellingsrud, S. A. Stromme, “On the homology of the Hilbert scheme of points in the plane”, Invent. Math., 87:2 (1987), 343–352
- Е. В. Ферапонтов, “Интегрирование слабо нелинейных полугамильтоновых систем гидродинамического типа методами теории тканей”, Матем. сб., 181:9 (1990), 1220–1235
- Е. В. Ферапонтов, “Уравнения гидродинамического типа с точки зрения теории тканей”, Матем. заметки, 50:5 (1991), 97–108
- E. V. Ferapontov, A. P. Fordy, “Separable Hamiltonians and integrable systems of hydrodynamic type”, J. Geom. Phys., 21:2 (1997), 169–182
- C. S. Gardner, J. M. Greene, M. D. Kruskal, R. M. Miura, “Method for solving the Korteweg–de Vries equation”, Phys. Rev. Lett., 19 (1967), 1095–1097
- I. M. Gelfand, M. M. Kapranov, A. V. Zelevinsky, Discriminants, resultants, and multidimensional determinants, Math. Theory Appl., Birkhäuser Boston, Inc., 1994, x+523 pp.
- N. Hitchin, “Stable bundles and integrable systems”, Duke Math. J., 54:1 (1987), 91–114
- F. Klein, “Über Hyperelliptische Sigmafunktionen. (Zweiter Aufsatz)”, Gesammelte Mathematische Abhandlungen, v. 3, J. Springer, Berlin, 1923, 323–357
- D. J. Korteweg, D. de Vries, “On the change of form of long waves advancing in a rectangular canal and on a new type of long stationary waves”, Philos. Mag. (5), 39:240 (1895), 422–443
- В. В. Козлов, “Тензорные инварианты и интегрирование дифференциальных уравнений”, УМН, 74:1(445) (2019), 117–148
- В. В. Козлов, “Квадратичные законы сохранения уравнений математической физики”, УМН, 75:3(453) (2020), 55–106
- И. М. Кричевер, “Методы алгебраической геометрии в теории нелинейных уравнений”, УМН, 32:6(198) (1977), 183–208
- Л. Д. Ландау, Е. М. Лифшиц, Гидродинамика, 3-е изд., перераб., Наука, М., 1986, 736 с.
- P. D. Lax, “Integrals of nonlinear equations of evolution and solitary waves”, Comm. Pure Appl. Math., 21:5 (1968), 467–490
- И. Макдональд, Симметрические функции и многочлены Холла, Мир, М., 1985, 224 с.
- А. В. Михайлов, “Идеалы квантования неабелевых интегрируемых систем”, УМН, 75:5(455) (2020), 199–200
- A. V. Mikhailov, A. B. Shabat, V. V. Sokolov, “The symmetry approach to classification of integrable equations”, What is integrability?, Springer Ser. Nonlinear Dynam., Springer, Berlin, 1991, 115–184
- A. V. Mikhailov, V. V. Sokolov, “Integrable ODEs on associative algebras”, Comm. Math. Phys., 211:1 (2000), 231–251
- О. И. Мохов, “Симплектические и пуассоновы структуры на пространствах петель гладких многообразий и интегрируемые системы”, УМН, 53:3(321) (1998), 85–192
- Д. Мамфорд, Лекции о тэта-функциях, Мир, М., 1988, 448 с.
- С. П. Новиков, “Периодическая задача для уравнения Кортевега–де Фриза. I”, Функц. анализ и его прил., 8:3 (1974), 54–66
- С. П. Новиков, “Роль интегрируемых моделей в развитии математики”, Сергей Петрович Новиков. К семидесятилетию со дня рождения. Интервью, статьи, выступления, МЦНМО, М., 2008, 75–93
- P. J. Olver, Jing Ping Wang, “Classification of integrable one-component systems on associative algebras”, Proc. London Math. Soc. (3), 81:3 (2000), 566–586
- А. М. Переломов, Интегрируемые системы классической механики и алгебры Ли, Наука, М., 1990, 240 с.
- О. К. Шейнман, “Интегрируемые системы алгебраического происхождения и разделение переменных”, Функц. анализ и его прил., 52:4 (2018), 94–98
- V. Sokolov, Algebraic structures in integrability, World Sci. Publ., Hackensack, NJ, 2020, xviii+327 pp.
- В. В. Соколов, “Неабелево обобщение волчка Эйлера на $mathfrak{so}_3$”, УМН, 76:1(457) (2021), 195–196
- P. Stäckel, Über die Integration der Hamilton–Jacobischen Differentialgleichung mittelst Separation der Variabeln, Habilitationsschrift, Halle A/S., B. G. Teubner, Leipzig, 1891, 26 pp.
- С. П. Царев, “Геометрия гамильтоновых систем гидродинамического типа. Обобщенный метод годографа”, Изв. АН СССР. Сер. матем., 54:5 (1990), 1048–1068
- А. В. Цыганов, Интегрируемые системы в методе разделения переменных, Современная математика, НИЦ “Регулярная и хаотическая динамика”, М.–Ижевск, 2005, 384 с.
- V. E. Zakharov (ed.), What is integrability?, Springer Ser. Nonlinear Dynam., Springer-Verlag, Berlin, 1991, xiv+321 pp.
Қосымша файлдар
