Multidimensional Hamiltonian systems: non-integrability and diffusion

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Hamiltonian systems of differential equations that are little different from completely integrable systems are under consideration. If such a system is integrable, then the action variables cannot change strongly, and there is no diffusion. Thus the non-integrable behaviour of a Hamiltonian system is closely linked with the diffusion of slow variables. This range of problems is discussed for a subclass of Hamiltonian systems. A new mechanism of diffusion, different from the ‘standard’ scheme of transition chains, is considered on these example. This mechanism is related to the breakdown of a large number of invariant tori of the non-perturbed problem which have almost resonance sets of frequencies. On the formal side, this phenomenon is based on the non-boundedness of integrals of conditionally-periodic functions of time with zero mean.

About the authors

Valery Vasil'evich Kozlov

Steklov Mathematical Institute of Russian Academy of Sciences

Email: vvkozlov@presidium.ras.ru
Scopus Author ID: 7402207934
ResearcherId: Q-4001-2016
Doctor of physico-mathematical sciences, Professor

References

  1. U. Bessi, “An approach to Arnold's diffusion through the calculus of variations”, Nonlinear Anal., 26:6 (1996), 1115–1135
  2. H. W. Broer, G. B. Huitema, M. B. Sevryuk, Quasi-periodic motions in families of dynamical systems. Order amidst chaos, Lecture Notes in Math., 1645, Springer-Verlag, Berlin, 1996, xii+196 pp.
  3. I. Baldoma, M. Giralt, M. Guardia, Coorbital homoclinic and chaotic dynamics in the restricted 3-body problem, 2023, 59 pp.
  4. Qinbo Chen, R. de la Llave, “Analytic genericity of diffusing orbits in a priori unstable Hamiltonian systems”, Nonlinearity, 35:4 (2022), 1986–2019
  5. A. Clarke, J. Fejoz, M. Guàrdia, “Topological shadowing methods in Arnold diffusion: weak torsion and multiple time scales”, Nonlinearity, 36:1 (2023), 426–457
  6. D. Treschev, “Arnold diffusion far from strong resonances in multidimensional a priori unstable Hamiltonian systems”, Nonlinearity, 25:9 (2012), 2717–2757
  7. V. V. Kozlov, “Formal stability, stability for most initial conditions and diffusion in analitic systems of differential equations”, Regul. Chaotic Dyn., 28:3 (2023), 251–264
  8. B. Fayad, “Lyapunov unstable elliptic equilibria”, J. Amer. Math. Soc., 36:1 (2023), 81–106
  9. V. V. Kozlov, “Symmetries and regular behavior in Hamiltonian systems”, Chaos, 6:1 (1996), 1–5
  10. L. H. Eliasson, “Absolutely convergent series expansions for quasi periodic motions”, Math. Phys. Electron. J., 2 (1996), 4, 33 pp.
  11. M. Bartuccelli, G. Gentile, “Lindstedt series for perturbations of isochronous systems: a review of the general theory”, Rev. Math. Phys., 14:2 (2002), 121–171
  12. L. Biasco, L. Chierchia, D. Treschev, “Stability of nearly integrable, degenerate Hamiltonian systems with two degrees of freedom”, J. Nonlinear Sci., 16:1 (2006), 79–107
  13. W. H. Gottschalk, G. A. Hedlund, Topological dynamics, Amer. Math. Soc. Colloq. Publ., 36, Amer. Math. Soc., Providence, RI, 1955, vii+151 pp.
  14. R. Krikorian, “On the divergence of Birkhoff normal forms”, Publ. Math. Inst. Hautes Etudes Sci., 135 (2022), 1–181
  15. V. G. Gelfreich, V. F. Lazutkin, M. B. Tabanov, “Exponentially small splittings in Hamiltonian systems”, Chaos, 1:2 (1991), 137–142
  16. D. V. Treschev, “An averaging method for Hamiltonian systems, exponentially close to integrable ones”, Chaos, 6:1 (1996), 6–14
  17. D. V. Treschev, “Splitting of separatrices for a pendulum with rapidly oscillating suspension point”, Russ. J. Math. Phys., 5:1 (1997), 63–98

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Kozlov V.V.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).