Transcriptome Study of Acclimating Ability of Clarias gariepinus to Low Temperature Conditions

Cover Page

Cite item

Full Text

Abstract

The results of transcriptome analysis of liver tissues of juvenile clarid catfish Clarias gariepinus to identify genes involved in acclimation to low temperatures are presented. A total of 377 differentially expressed genes involved in the activation of ubiquitin-dependent processes of protein catabolism, lipid metabolism, immune response, signaling pathways, etc. were found. It was discovered that low water temperature suppresses the basal metabolism of juvenile C. gariepinus and induces cold stress. At the same time, the adaptive potential to cold resistance is traced in the denaturation of damaged proteins, complex metabolic reconfiguration in liver tissues, and the expression of highly mobile group genes.

About the authors

A. A. Klimuk

Razumovsky Moscow State University of Technologies and Management (First Cossack University); Vavilov Institute of General Genetics, Russian Academy of Sciences

Email: ord@mgutm.ru
Moscow, Russia

A. A. Vatlin

Vavilov Institute of General Genetics, Russian Academy of Sciences

Moscow, Russia

S. V. Beketov

Vavilov Institute of General Genetics, Russian Academy of Sciences

Moscow, Russia

N. I. Kochetkov

Razumovsky Moscow State University of Technologies and Management (First Cossack University); Vavilov Institute of General Genetics, Russian Academy of Sciences

Moscow, Russia

A. L. Nikiforov-Nikishin

Razumovsky Moscow State University of Technologies and Management (First Cossack University)

Moscow, Russia

References

  1. Мельченков Е.А., Приз В.В., Чертихина Е.А., Канидьева Т.А. Африканский сом — перспективный объект аквакультуры в средней полосе России // Рыбное хозяйство. 2008. № 6. С. 72-77.
  2. Климук А.А., Бекетов С.В., Калита Т.Л. Физиолого-экологические особенности выращивания африканского крапиевого сома Clarias gariepinus // Успехи соврем. биол. 2024. Т. 144 (6). С. 705-716. https://doi.org/10.31857/S0042132424060075
  3. Atwood H.L., Tomasso J.R., Webb K., Gatlin D.M. Low-temperature tolerance of Nile tilapia, Oreochromis niloticus: effects of environmental and dietary factors // Aquacult. Res. 2003. V. 34 (3). P. 241-251. https://doi.org/10.1046/j.1365-2109.2003.00811.x
  4. Brummet R.E. Clarias catfish: Biology, ecology, distribution and biodiversity // Proceedings of a workshop on the development of a genetic improvement program for African catfish Clarias gariepinus. WorldFish Center conference proceedings. 2008. № 1889. P. 64-72.
  5. Chen R.E., Thorner J. Function and regulation in MAPK signaling pathways: lessons learned from the yeast Saccharomyces cerevisiae // Biochim. Biophys. Acta (BBA)- Mol. Cell Res. 2007. V. 1773 (8). P. 1311-1340. https://doi.org/10.1016/j.bbamcr.2007.05.003
  6. Chou M.Y., Hsiao C.D., Chen S.C. et al. Effects of hypothermia on gene expression in zebrafish gills: upregulation in differentiation and function of ionocytes as compensatory responses // J. Experim. Biol. 2008. V. 211 (19). P. 3077-3084. https://doi.org/10.1242/jeb.019950
  7. Colcombet J., Hirt H. Arabidopsis MAPKs: a complex signalling network involved in multiple biological processes // Biochem. J. 2008. V. 413 (2). P. 217-226. https://doi.org/10.1042/BJ20080625
  8. Core Team. R: A language and environment for statistical computing; R foundation for statistical computing: Vienna, Austria, 2021. Available online: https://www.R-project.org/ (accessed on 15 Desember 2024).
  9. Dellagostin E.N., Martins A.W., Blodorn E.B. et al. Chronic cold exposure modulates genes related to feeding and immune system in Nile tilapia (Oreochromis niloticus) // Fish Shellfish Immunol. 2022. V. 128. P. 269-278. https://doi.org/10.1016/j.fsi.2022.07.075
  10. Gracey A.Y., Fraser E.J., Li W. et al. Coping with cold: an integrative, multitiessay analysis of the transcriptome of a poikilothermic vertebrate // PNAS USA. 2004. V. 101 (48). P. 16970-16975. https://doi.org/10.1073/pnas.0403627101
  11. Hu P., Liu M., Liu Y. et al. Transcriptome comparison reveals a genetic network regulating the lower temperature limit in fish // Sci. Rep. 2016. V. 6 (1). P. 28952. https://doi.org/10.1038/srep28952
  12. Johnston P.V., Roots B.I. Brain lipid fatty acids and temperature acclimation // Comp. Biochem. Physiol. 1964. V. 11 (3). P. 303-309. https://doi.org/10.1016/0010-406X(64)90111-2
  13. Ju Z., Dunham R.A., Liu Z. Differential gene expression in the brain of channel catfish (Ictalurus punctatus) in response to cold acclimation // Mol. Genet. Genom. 2002. V. 268. P. 87-95. https://doi.org/10.1007/s00438-002-0727-9
  14. Kochetkov N., Smorodinskaya S., Vatlin A. et al. Ability of Lactobacillus brevis 47f to alleviate the toxic effects of imidacloprid low concentration on the histological parameters and cytokine profile of zebrafish (Danio rerio) // Internat. J. Mol. Sci. 2023. V. 24 (15). P. 12290. https://doi.org/10.3390/ijms241512290
  15. Logan C.A., Buckley B.A. Transcriptomic responses to environmental temperature in eurythermal and stenothermal fishes // J. Experim. Biol. 2015. V. 218 (12). P. 1915-1924. https://doi.org/10.1242/jeb.114397
  16. Long Y., Song G., Yan J. et al. Transcriptomic characterization of cold acclimation in larval zebrafish // BMC Genomics. 2013. V. 14. P. 1-16. https://doi.org/10.1186/1471-2164-14-612
  17. Lu D.L., Ma Q., Wang J. et al. Fasting enhances cold resistance in fish through stimulating lipid catabolism and autophagy // J. Physiol. 2019. V. 597 (6). P. 1585-1603. https://doi.org/10.1113/JP277091
  18. Luo Z., Huang W., Wang G. et al. Identification and characterization of p38 MAPK in response to acute cold stress in the gill of Pacific white shrimp (Litopenaeus vannamei) // Aquacult. Rep. 2020. V. 17. P. 100365. https://doi.org/10.1016/j.aqrep.2020.100365
  19. Marini F., Linke J., Binder H. Ideal: an R/Bioconductor package for interactive differential expression analysis // bioRxiv. 2020. https://doi.org/10.1101/2020.01.10.901652
  20. Na-Nakorn U., Brummet R.E. Use and exchange of aquatic genetic resources for food and aquaculture: Clarias catfish // Rev. Aquacult. 2009. V. 1 (3-4). P. 214-223. https://doi.org/10.1111/j.1753-5131.2009.01010.x
  21. Qian B., Xue L. Liver transcriptome sequencing and de novo annotation of the large yellow croaker (Larimichthy crocea) under heat and cold stress // Marine Genom. 2016. V. 25. P. 95-102. https://doi.org/10.1016/j.margen.2015.12.001
  22. Rebl A., Verleih M., Kobis J.M. et al. Transcriptome profiling of gill tissue in regionally bred and globally farmed rainbow trout strains reveals different strategies for coping with thermal stress // Marine Biotechnol. 2013. V. 15. P. 445-460. https://doi.org/10.1007/s10126-013-9501-8
  23. Ren J., Long Y., Liu R. et al. Characterization of biological pathways regulating acute cold resistance of zebrafish // Internat. J. Mol. Sci. 2021. V. 22 (6). P. 3028. https://doi.org/10.3390/ijms22063028
  24. RStudio Team. RStudio: integrated development for R; RStudio, PBC: Boston, MA, USA, 2020. Available online: http://www.rstudio.com/ (accessed on January 5, 2024)
  25. Shin S.J., Kim T.Y., Lee J.Y., Bian L. Cognitive team diversity and individual team member creativity: a cross-level interaction // Acad. Manag. J. 2012. V. 55 (1). P. 197-212. https://doi.org/10.5465/amj.2010.0270
  26. Siliciano J.D., Cannan C.E., Taya Y. et al. DNA damage induces phosphorylation of the amino terminus of p53 // Gen. Develop. 1997. V. 11 (24). P. 3471-3481. https://doi.org/10.1101/gad.11.24.3471
  27. Thorne M.A.S., Burns G., Fraser K.P.P. et al. Transcription profiling of acute temperature stress in the Antarctic plunderfish Harpagifer antarcticus // Marine Genomics. 2010. V. 3 (1). P. 35-44. https://doi.org/10.1016/j.margen.2010.02.002
  28. Velmurugan B.K., Chan C.R., Weng C.F. Innate-immune responses of tilapia (Oreochromis mossambicus) exposure to acute cold stress // J. Cell. Physiol. 2019. V. 234 (9). P. 16125-16135. https://doi.org/10.1002/jcp.28270
  29. Vergauwen L., Benoot D., Blust R., Knapen D. Long-term warm or cold acclimation elicits a specific transcriptional response and affects energy metabolism in zebrafish // Comp. Biochem. Physiol. P. A Mol. Integr. Physiol. 2010. V. 157 (2). P. 149-157. https://doi.org/10.1016/j.cbpa.2010.06.160
  30. Xu P., Zhang X., Wang X. et al. Genome sequence and genetic diversity of the common carp, Cyprinus carpio // Nat. Genet. 2014. V. 46 (11). P. 1212-1219. https://doi.org/10.1038/ng.3098

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).