Извлечение ионов меди композиционными сорбентами на основе хитозана из водных растворов в присутствии поверхностно-активного вещества

Обложка

Цитировать

Полный текст

Аннотация

Представлены результаты исследования сорбции ионов меди(II) композиционными сорбентами на основе хитозана и минеральных армирующих наполнителей из водных растворов и растворов, содержащих додецилдиметиламин-N-оксид. Показано, что композиционные сорбенты “хитозан–глауконит” и “хитозан–цеолит” характеризуются наибольшим приростом сорбционной емкости по ионам Cu(II) в растворах содержащих ПАВ, чем композиты состава “хитозан–диоксид кремния” и “хитозан–монтмориллонит”. Проведено сравнение сорбционных характеристик композиционных сорбентов с таковыми для исходного гидрогелевого хитозанового сорбента. Получены ИК-спектры, дифрактограммы, микрофотографии поверхности образцов.

Об авторах

В. А. Габрин

Ивановский государственный химико-технологический университет

Email: gabrinvictoria@gmail.com
Россия, 153000, Иваново, пр. Шереметевский, 7

Т. Е. Никифорова

Ивановский государственный химико-технологический университет

Автор, ответственный за переписку.
Email: tatianaenik@mail.ru
Россия, 153000, Иваново, пр. Шереметевский, 7

Список литературы

  1. Rehman M., Liu L., Wang Q. et al. // Environmental Science and Pollution Research. 2019. V. 26. P. 18003–18016.
  2. Na Y., Lee J., Lee S.H. et al. // Polymer-Plastics Technology and Materials. 2020. V. 59. P. 1768545.
  3. Saheed I.O., Oh W.Da, Suah F.B.M. // J. Hazardous Materials 2021. V. 408. P. 124889.
  4. Fufaeva V.A., Filippov D.V. // Chem. Chem. Tech. 2021. V. 64 (5). https://doi.org/10.6060/IVKKT.20216405.6354
  5. Shayegan H., Ali G.A.M., Safarifard V. // Chemistry Select. 2020. V. 5. P. 04107.
  6. Zamora-Ledezma C. // Environ. Technol. Innov. 2021. V. 22. P. 101504.
  7. Shrestha R. // J. Environmental Chemical Engineering. 2021. V. 9. P. 105688.
  8. Krishnan S. // Environmental Technology & Innovation. 2021. V. 22. P. 101525.
  9. Rathi B.S., Kumar P.S., Vo D.V.N. // Science of the Total Environment. 2021. P. 797. P. 149134.
  10. Kostag M., El Seoud O.A. // Carbohydrate Polymer Technologies and Applications. 2021. V. 2. P. 100079.
  11. Mishra J., Saini R., Singh D. // IOP Conference Series: Materials Science and Engineering. 2021. V. 1168. P. 012027.
  12. Tang S. // Chemical Engineering J. 2020. V. 393. P. 124728.
  13. Qiao L., Li S., Li Y. et al. // J. Cleaner Production. 2020. V. 253. P. 120017.
  14. Pap S. // Environmental Science and Pollution Research. 2020. V. 27. P. 9790–9802.
  15. Filippov D.V., Fufaeva V.A., Shepelev M.V. // Russian J. Inorganic Chemistry. 2022. https://doi.org/10.1134/S0036023622030081
  16. Wang F., Sun Y., Guo X. et al. // J. Sol-Gel Science and Technology. 2020. V. 96. P. 360–369.
  17. Upadhyay U., Sreedhar I., Singh S.A. et al. // Carbohydrate Polymers. 2021. V. 251. P. 117000.
  18. Fan X., Wang X., Cai Y. et al. // J. Hazardous Materials. 2022. V. 423. P. 127191.
  19. Kayan G.Ö., Kayan A. // J. Polymers and the Environment. 2021. V. 29. P. 3477–3496.
  20. Kusrini E. // International J. Technology. 2021. V. 12. P. 275–286.
  21. Lin Z., Yang Y., Liang Z. et al. // Polymers. 2021. V. 13. P. 1891.
  22. Fufaeva V.A., Nikiforova T.E. // Protection of Metals and Physical Chemistry of Surfaces. 2022. V. 58. P. 262–268.

Дополнительные файлы


© В.А. Габрин, Т.Е. Никифорова, 2023

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).