METAL COMPLEX CHROMOPHORES BASED ON o-IMINOBENZOQUINONATO DERIVATIVES OF COBALT(III), COPPER(II) AND NICKEL(II): MOLECULAR STRUCTURE, ELECTRONIC ABSORPTION SPECTRA AND THERMAL PROPERTIES
- Авторлар: Pashanova K.I1, Lazarev N.M1, Yakushev I.A2, Zolotukhin A.A1, Kovylina T.A1, Arsenyev M.V1, Bogomyakov A.S3, Maximova A.D4, Dorovatovskii P.V4, Piskunov A.V1
-
Мекемелер:
- G.A. Razuvaev Institute of Organometallic Chemistry
- N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
- International Tomography Centre Siberian Branch of Russian Academy of Sciences
- National Research Centre "Kurchatov Institute"
- Шығарылым: Том 70, № 11 (2025)
- Беттер: 1543-1560
- Бөлім: КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ
- URL: https://medbiosci.ru/0044-457X/article/view/378183
- DOI: https://doi.org/10.7868/S3034560X25110122
- ID: 378183
Дәйексөз келтіру
Аннотация
Негізгі сөздер
Авторлар туралы
K. Pashanova
G.A. Razuvaev Institute of Organometallic Chemistry
Email: pashanova@iomc.ras.ru
Nizhny Novgorod, Russia
N. Lazarev
G.A. Razuvaev Institute of Organometallic ChemistryNizhny Novgorod, Russia
I. Yakushev
N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of SciencesMoscow, Russia
A. Zolotukhin
G.A. Razuvaev Institute of Organometallic ChemistryNizhny Novgorod, Russia
T. Kovylina
G.A. Razuvaev Institute of Organometallic ChemistryNizhny Novgorod, Russia
M. Arsenyev
G.A. Razuvaev Institute of Organometallic ChemistryNizhny Novgorod, Russia
A. Bogomyakov
International Tomography Centre Siberian Branch of Russian Academy of SciencesNovosibirsk, Russia
A. Maximova
National Research Centre "Kurchatov Institute"Moscow, Russia
P. Dorovatovskii
National Research Centre "Kurchatov Institute"Moscow, Russia
A. Piskunov
G.A. Razuvaev Institute of Organometallic ChemistryMoscow, Russia
Әдебиет тізімі
- Griffiths J. // Color. Technol. 1981. V. 11. № 1. P. 37. https://doi.org/10.1111/j.1478-4408.1981.tb03714x
- Tyagi V., Rahim N.A.A., Rahim N.A. et al. // Renew. Sustain. Energy Rev. 2013. V. 20. P. 443. https://doi.org/10.1016/j.rser.2012.09.028
- Goetzberger A., Hebling C., Schock H.-W. // Mater. Sci. Eng., R: Rep. 2003. V. 40. № 1. P. 1. https://doi.org/10.1016/S0927-796X(02)00092-X
- Grätzel M. // Inorg. Сhem. 2005. V. 44. № 20. P. 6841. https://doi.org/10.1021/ic0508371
- Hegedus S., Luque A. Handbook of photovoltaic science and engineering. N.Y.: Wiley, 2010. https://doi.org/10.1002/9780470974704
- Reinders A., Verlinden P., Van Sark W. et al. Photovoltaic Solar Energy. From Fundamentals to Applications. Hoboken: John Wiley & Sons, 2017.
- Housecroft C.E., Constable E.C. // Chem. Sci. 2022. V. 13. P. 1225. https://doi.org/10.1039/D1SC06828H
- Смирнова Е.А., Беседина М.А., Карушев М.П. и др. // Журн. физ. химии. 2016. Т. 90. № 5. С. 808.
- Agrawal G.P. Nonlinear fiber optics, in Nonlinear Science at the Dawn of the 21st Century. Heidelberg: Springer Berlin, 2000. https://doi.org/10.1007/3-540-46629-0
- Davis C.C., Murphy T.E. // IEEE Signal Process. Mag. 2011. V. 28. P. 147. https://doi.org/10.1109/MSP.2011.941096
- Mitschke F. Fiber optics. Berlin: Springer Berlin, 2016. https://doi.org/10.1007/978-3-662-52764-1
- Granqvist C.G. // Solid State Ionics. 1992. V. 53–56. P. 479. https://doi.org/10.1016/0167-2738(92)90418-O
- Mortimer R.J. // Chem. Soc. Rev. 1997. V. 26. P. 147. https://doi.org/10.1039/CS9972600147
- Rosseinsky D.R., Mortimer R.J. // Adv. Mater. 2001. V. 13. № 11. P. 783. https://doi.org/10.1002/1521-4095(200106)13:11<783::AID-ADMA783>3.0.CO;2-D
- Nejad M.A.F., Ranjbar S., Parolo C. et al. // Mater. Today. 2021. V. 50. P. 476. https://doi.org/10.1016/j.mattod.2021.06.015
- Miao Q., Gao J., Wang Z. et al. // Inorg. Chim. Acta. 2011. V. 376. № 1. P. 619. https://doi.org/10.1016/j.ica.2011.07.046
- Poddel'sky A.I., Cherkasov V.K., Abakumov G.A. // Coord. Chem. Rev. 2009. V. 253. P. 291. https://doi.org/10.1016/j.ccr.2008.02.004
- Pashanova K.I., Poddel'sky A.I., Piskunov A.V. // Coord. Chem. Rev. 2022. V. 459. P. 214399. https://doi.org/10.1016/j.ccr.2021.214399
- Sekar N., Gehlot V.Y. // Resonance. 2010. V. 15. P. 819. https://doi.org/10.1007/s12045-010-0091-8
- Giribabu L., Kanaparthi R.K., Velkannan V. // The Chem. Rec. 2012. V. 12. № 3. P. 306. https://doi.org/10.1002/tcr.201100044
- Broere D.L., Plessius R., van der Vlugt J.I. // Chem. Soc. Rev. 2015. V. 44. P. 6886. https://doi.org/10.1039/c5cs00161g
- Luca O.R., Crabtree R.H. // Chem. Soc. Rev. 2013. V. 42. P. 1440. https://doi.org/10.1039/c2cs35228a
- Sobottka S., Nößler M., Ostericher A.L. et al. // Chem. Eur. J. 2020. V. 26. № 6. P. 1314. https://doi.org/10.1002/chem.201903700
- Okabe N., Aziyama T., Odoko M. // Acta Crystallogr., Sect. E: Struct. Rep. Online. 2005. V. 61. P. m2154. https://doi.org/10.1107/S160053680503062X
- Romashev N.F., Abramov P.A., Bakaev I.V. et al. // Inorg. Chem. 2022. V. 61. № 4. P. 2105. https://doi.org/10.1021/acs.inorgchem.1c03314
- Sarkar P., Manamel L.T., Saha P. et al. // Mater. Horiz. 2025. V. 12. P. 246. https://doi.org/10.1039/D4MH00928B
- Kramer W.W., Cameron L.A., Zarkesh R.A. et al. // Inorg. Chem. 2014. V. 53. № 16. P. 8825. https://doi.org/10.1021/ic5017214
- Pashanova K.I., Bitkina V.O., Yakushev I.A. et al. // Molecules. 2021. V. 26. № 15. P. 4622. https://doi.org/10.3390/molecules26154622
- Aegerter M.A., Mennig M. Sol-gel technologies for glass producers and users. New York: Springer New York, 2004. https://doi.org/10.1007/978-0-387-88953-5
- Tjona M. // Adv. Mater. Res. 2013. V. 2. N: 4. P. 195. https://doi.org/10.12989/amr.2013.2.4.195
- Pashanova K.I., Lazarev N.M., Kukinov A.A. et al. // ChemistrySelect. 2022. V. 7. N: 10. P. e202104477. https://doi.org/10.1002/slct.202104477
- Pashanova K.I., Lazarev N.M., Zolotukhin A.A. et al. // Chemistry. Select. 2024. V. 9. N: 15. P. e202304536. https://doi.org/10.1002/slct.202304536
- Pashanova K.I., Yakushev I.A., Lazarev N.M. et al. // Russ. J. Inorg. Chem. 2024. V. 69. N: 11. P. 1671. https://doi.org/10.1134/S0036023624601612
- Neuthe K., Popeney C.S., Bialecka K. // Polyhedron. 2014. V. 81. P. 583. https://doi.org/10.1016/j.poly.2014.07.015
- Salojarvi E., Peuronen A., Huhtinen H. et al. // Inorg. Chem. Commun. 2020. V. 112. P. 107711. https://doi.org/10.1016/j.inoche.2019.107711
- O'Regan B., Grätzel M. // Nature. 1991. V. 353. P. 737. https://doi.org/10.1038/353737a0
- Gershon T. // Mater. Sci. Technol. 2011. V. 27. N: 9. P. 1357. https://doi.org/10.1179/026708311X13081465539809
- Armstrong N.R., Carter C., Donley C. et al. // Thin Solid Films. 2003. V. 445. N: 2. P. 342. https://doi.org/10.1016/j.tsf.2003.08.067
- Armstrong N.R., Veneman P.A., Ratcliff E. et al. // Acc. Chem. Res. 2009. V. 42. N: 11. P. 1748. https://doi.org/10.1021/ar900096f
- Goutman K., Dalpati G., Sharma H. et al. // J. Mater. Chem. A. 2021. V. 9. N: 31. P. 16621. https://doi.org/10.1039/D1TA01291F
- Хоменко Т.Н., Саломатина О.В., Курбакова С.Ю. и др. // Журн. орган. химии. 2006. Т. 42. № 11. С. 1666.
- Гордон А., Форд Р. Спутник химика. Физико-химические свойства, методики, библиография. М.: Мир, 1976.
- Райхардт К. Растворители и эффекты среды в органической химии. М.: Мир, 1991.
- Rajput A., Sharma A.K., Barman S.K. // Inorg. Chem. 2013. V. 53. P. 36. https://doi.org/10.1021/ic401985d
- Piskunov A.V., Pashanova K.I., Ershova I.V. et al. // Russ. Chem. Bull. 2019. V. 68. P. 757. https://doi.org/10.1007/s11172-019-2483-6
- Piskunov A.V., Pashanova K.I., Bogomyakov A.S. et al. // Dalton Trans. 2018. V. 47. P. 15049. https://doi.org/10.1039/c8dt02733a
- Okuniewski A., Rosiak D., Chojnacki J. // Polyhedron. 2015. V. 90. P. 47. https://doi.org/10.1016/j.poly.2015.01.035
- Yang L., Powell D.R., Houser R.P. // Dalton Trans. 2007. V. 9. N: 9. P. 955. https://doi.org/10.1039/b617136b
- Brown S.N. // Inorg. Chem. 2012. V. 51. N: 13. P. 1251. https://doi.org/10.1021/ic202764j
- Mukherjee R. // Inorg. Chem. 2020. V. 59. N: 18. P. 12961. https://doi.org/10.1021/acs.inorgchem.0c00240
- Smith A.L., Clapp L.A., Hardcastle K.I. // Polyhedron. 2010. V. 29. P. 164. https://doi.org/10.1016/j.poly.2009.06.046
- Paul G.C., Ghorai S., Mukherjee C. // Chem. Commun. 2017. V. 53. P. 8022. https://doi.org/10.1039/c7cc03486e
- Bill E., Bothe E., Chaudhuri P. et al. // Chem. Eur. J. 2005. V. 11. P. 204. https://doi.org/10.1002/chem.200400850
- Piskunov A.V., Pashanova K.I., Bogomyakov A.S. et al. // Polyhedron. 2020. P. 114610. https://doi.org/10.1016/j.poly.2020.114610
- Paretzki A., Bubrin M., Fiedler J. et al. // Chem. Eur. J. 2014. V. 20. P. 5414. https://doi.org/10.1002/chem.201304316
- Mukherjee A., Mukherjee R. // Ind. J. Chem. 2011. V. 50A. P. 484.
- Piskunov A.V., Pashanova K.I., Bogomyakov A.S. et al. // Polyhedron. 2016. V. 119. P. 286. https://doi.org/10.1016/j.poly.2016.08.033
- Mukherjee C., Pieper U., Bothe E. et al. // Inorg. Chem. 2008. V. 47. N: 19. P. 8943. https://doi.org/10.1021/ic8009767
- Chaudhuri P., Verani C.N., Bill E. et al. // J. Am. Chem. Soc. 2001. V. 123. N: 10. P. 2213. https://doi.org/10.1021/ja003831d
- Cardona C.M., Li W., Kaifer A.E. et al. // Adv. Mater. 2011. V. 23. N: 20. P. 2367. https://doi.org/10.1002/adma/201004554
Қосымша файлдар
