HEAT CAPACITY AND THERMODYNAMIC PROPERTIES OF COMPLEX OXIDES WITH β-PYROCLORE STRUCTURE CsTeMoO6 AND CsV0.625Te1.375O6

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The heat capacity of complex oxides with β-pyrochlore structure CsTeMoO6 and CsV0.625Te1.375O6 was investigated by adiabatic vacuum and differential scanning calorimetry in the temperature range of T = 5–500 K. The standard thermodynamic functions: heat capacity Cp o , enthalpy [H°(T)−H°(0)], absolute entropy [S°(T)] and the Gibbs energy [G°(T)−H°(0)] for the range from T → 0 to 500 K were calculated based on the obtained experimental data. The low-temperature (T < 50 K) heat capacity dependence was analyzed on the basis of multifractal model and chain-layered structure topology of the studied compounds was established.

About the authors

N. N Smirnova

Lobachevsky State University of Nizhny Novgorod

Nizhny Novgorod, Russia

Yu. A Sarmini

Lobachevsky State University of Nizhny Novgorod

Nizhny Novgorod, Russia

A. V Markin

Lobachevsky State University of Nizhny Novgorod

Email: markin@chem.unn.ru
Nizhny Novgorod, Russia

D. G Fukina

Lobachevsky State University of Nizhny Novgorod

Nizhny Novgorod, Russia

E. V Suleimanov

Lobachevsky State University of Nizhny Novgorod

Nizhny Novgorod, Russia

References

  1. Hoffmann M.R., Martin S.T., Choi W. et al. // Chem. Rev. 2002. V. 95. № 1. P. 69. http://dx.doi.org/10.1021/cr00033a004
  2. Kudo A., Miseki Y. // Chem. Soc. Rev. 2009. V. 38. P. 253. https://doi.org/10.1039/B800489G
  3. Subramanian M.A., Aravamudan G., Subba Rao G.V. // Prog. Solid St. Chem. 1983. V. 15. P. 55.
  4. Sakai H., Yoshimura K., Ohno H. et al. // J. Condens. Matter Phys. 2001. V. 13. № 33. https://doi.org/10.1016/S0921-4534(02)01379-5
  5. Ikeda S., Itani T., Nango K. et al. // Cat. Let. 2004. V. 98. № 4. P. 229. https://doi.org/10.1007/s10562-004-8685-y
  6. Gardner J.S., Gingras M.J.P., Greedan J.E. // Rev. Mod. Phys. 2010. V. 83. P. 53. https://doi.org/10.1103/RevModPhys.82.53
  7. Kako T., Kikugawa N., Ye J. // Cat. Today. 2002. V. 131. P. 197. https://doi.org/10.1016/j.cattod.2007.10.094
  8. Reddy J.R., Ravi G., Veldurthi N.K. et al. // Z. Anorg. Allg. Chem. 2013. V. 639. № 5. P. 794. https://doi.org/10.1021/jp063406s
  9. Varlamova L.A., Ignatov S.K., Fukina D.G. et al. // J. Phys. Chem. C. 2018. V. 122. P. 24907. https://doi.org/10.1021/acs.jpcc.8b07117
  10. Gorshkov A.P., Mazhukina K.A., Volkova N.S. et al. // J. Solid State Chem. 2022. V. 310. P. 123083. https://doi.org/10.1016/j.jssc.2022.123083
  11. Fukina D.G., Shotina V.A., Boryakov A.V. et al. // Chem. Photo Chem. 2023. P. e202300072. https://doi.org/10.1002/cptc.202300072
  12. Fukina D.G., Koryagin A.V., Titaev D.N. et al. // Eur. J. Inorg. Chem. 2022. P. e202200371. https://doi.org/10.1002/ejic.202200371
  13. Fukina D.G., Koryagin A.V., Koroleva A.V. et al. // J. Solid State Chem. 2021. V. 300. P. 122235. https://doi.org/10.1016/j.jssc.2021.122235
  14. Markin A.V., Smirnova N.N., Goryunova P.E. et al. // Russ. J. Inorg. Chem. 2024. V. 69. P. 1718. https://doi.org/10.1134/S0036023624602447
  15. Markin A.V., Smirnova N.N., Fukina D.G. et al. // J. Chem. Thermodyn. 2021. V. 160. P. 106492. https://doi.org/10.1016/j.jct.2021.106492
  16. Fukina D.G., Suleimanov E.V., Fukin G.K. et al. // J. Solid State Chem. 2019. V. 272. P. 47. https://doi.org/10.1016/j.jssc.2020.121267
  17. Fukina D.G., Shotina V.A., Boryakov A.V. et al. // Eur. J. Inorg. Chem. 2023. P. e202200766. https://doi.org/10.1002/ejic.202200766
  18. Varushchenko R.M., Druzhinina A.I., Sorkin E.L. // J. Chem. Thermodyn. 1997. V. 29. P. 623. https://doi.org/10.1006/jcht.1996.0173
  19. Sabbah R., Xu-wu A., Chickos J.S. et al. // Thermochim. Acta. 1999. V. 331 (2). P. 93. https://doi.org/10.1016/S0040-6031(99)00009-X
  20. Höhne G.W.H., Hemminger W.F., Flammersheim H.-J. Differential scanning calorimetry / New York, Springer-Verlag Berlin Heidelberg, 2003. https://doi.org/10.1007/978-3-662-06710-9
  21. Drebushchak V.A. // J. Therm. Anal. Calorim. 2005. V. 79. P. 213. https://doi.org/10.1007/s10973-004-0586-1
  22. Della Gatta G., Richardson M.J., Sarge S.M. et al. // Pure Appl. Chem. 2006. V. 78. P. 1455. https://doi.org/10.1351/pac200678071455
  23. Lazarev V.B., Izotov A.D., Gavrichev K.S. et al. // Thermochim. Acta. 1995. V. 269/270. P. 109. https://doi.org/10.1016/0040-6031(95)02529-4
  24. Тарасов В.В. // Журн. физ. химии. 1950. Т. 24. № 1. С. 111.
  25. Lebedev B.V. // Thermochim. Acta. 1997. V. 297. P. 143.
  26. Cullough J.P., Scott D.W. Calorimetry of Non-reacting Systems / London, Butterworth, 1968.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).