LOW-TEMPERATURE SYNTHESIS OF SnO NANOSHEETS VIA CHEMICAL DEPOSITION: MORPHOLOGY, STRUCTURE, AND THERMAL STABILITY
- 作者: Solomatov I.A.1,2, Fisenko N.A.1, Simonenko N.P.1, Gorobtsov P.Y.1, Simonenko T.L.1, Simonenko E.P.1
-
隶属关系:
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
- National Research University "Higher School of Economics"
- 期: 卷 70, 编号 11 (2025)
- 页面: 1456–1464
- 栏目: СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ
- URL: https://medbiosci.ru/0044-457X/article/view/378174
- DOI: https://doi.org/10.7868/S3034560X25110033
- ID: 378174
如何引用文章
详细
作者简介
I. Solomatov
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences; National Research University "Higher School of Economics"
Email: ivsolomatov@yandex.ru
Moscow, Russia
N. Fisenko
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of SciencesMoscow, Russia
N. Simonenko
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of SciencesMoscow, Russia
Ph. Gorobtsov
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of SciencesMoscow, Russia
T. Simonenko
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of SciencesMoscow, Russia
E. Simonenko
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of SciencesMoscow, Russia
参考
- Sivaramasubramaniam R., Muhamad M.R., Radhakrishna S. // Phys. Status Solidi A. 1993. V. 136. № 1. P. 215. https://doi.org/10.1002/pssa.2211360126
- Ogo Y., Hiramatsu H., Nomura K. et al. // Appl. Phys. Lett. 2008. V. 93. № 3. P. 1. https://doi.org/10.1063/1.2964197
- Pan X.Q., Fu L. // J. Electroceram. 2001. V. 7. № 1. P. 35. https://doi.org/10.1023/A:1012270927642
- Guo W., Fu L., Zhang Y. et al. // Appl. Phys. Lett. 2010. V. 96. № 4. P. 1. https://doi.org/10.1063/1.3277153
- Liang L.Y., Liu Z.M., Cao H.T. et al. // ACS Appl. Mater. Interfaces. 2010. V. 2. N. 4. P. 1060. https://doi.org/10.1021/am900838z
- Tsukazaki A., Ohtomo A., Onuma T. et al. // Nat. Mater. 2005. V. 4. N. 1. P. 42. https://doi.org/10.1038/nmat1284
- Kawazoe H., Yasukawa M., Hyodo H. et al. // Nature. 1997. V. 389. N. 6654. P. 939. https://doi.org/10.1038/40087
- Simonenko E.P., Nagornov I.A., Mokrushin A.S. et al. // Micromachines (Basel). 2023. V. 14. N. 4. P. 725. https://doi.org/10.3390/mi14040725
- Bazito F.F.C., Torresi R.M. // J. Braz. Chem. Soc. 2006. V. 17. N. 4. P. 627. https://doi.org/10.1590/S0103-50532006000400002
- Luo H., Liang L.Y., Cao H.T. et al. // ACS Appl. Mater. Interfaces. 2012. V. 4. N. 10. P. 5673. https://doi.org/10.1021/am301601s
- Чжоу Д., Чеканников А.А., Семененко Д.А. и др. // Журн. неорган. химии. 2022. Т. 67. № 9. С. 1350. https://doi.org/10.31857/S0044457X22090021
- Wang L., Ji H., Zhu F. et al. // Nanoscale. 2013. V. 5. N. 16. P. 7613. https://doi.org/10.1039/c3nr00951c
- Iqbal M.Z., Wang F., Hussain R. et al. // Mater. Focus. 2014. V. 3. N. 2. P. 92. https://doi.org/10.1166/mat.2014.1147
- Pan X.Q., Fu L. // J. Appl. Phys. 2001. V. 89. N. 11. P. 6048. https://doi.org/10.1063/1.1368865
- Fan H., Reid S.A. // Chem. Mater. 2003. V. 15. N. 2. P. 564. https://doi.org/10.1021/cm0208509
- Forster M. // Energy. 2004. V. 29. N. 5-6. P. 789. https://doi.org/10.1016/S0360-5442(03)00185-3
- Soares M.R., Dionisio P.H., Baumvol I.J.R. et al. // Thin Solid Films. 1992. V. 214. N. 1. P. 6. https://doi.org/10.1016/0040-6090(92)90449-L
- Васильев А.А., Лагутин А.С., Набиев Ш.Ш. // Журн. неорган. химии. 2020. Т. 65. № 12. С. 1710. https://doi.org/10.31857/S0044457X20120193
- Zhu L., Yang H., Jin D. et al. // Inorg. Mater. 2007. V. 43. N. 12. P. 1307. https://doi.org/10.1134/S0020168507120102
- Sun G., Qi F., Li Y. et al. // Mater. Lett. 2014. V. 118. P. 69. https://doi.org/10.1016/j.matlet.2013.12.048
- Kumar B., Lee D.-H., Kim S.-H. et al. // J. Phys. Chem. C. 2010. V. 114. N. 25. P. 11050. https://doi.org/10.1021/jp101682v
- Hill M.S., Johnson A.L., Lowe J.P. et al. // Dalton Trans. 2016. V. 45. N. 45. P. 18252. https://doi.org/10.1039/C6DT02508K
- Wu D.-S., Han C.-Y., Wang S.-Y. et al. // Mater. Lett. 2002. V. 53. N. 3. P. 155. https://doi.org/10.1016/S0167-577X(01)00468-2
- Krishnakumar T., Pinna N., Kumari K.P. et al. // Mater. Lett. 2008. V. 62. N. 19. P. 3437. https://doi.org/10.1016/j.matlet.2008.02.062
- Moreno M.S., Mercader R.C., Bibiloni A.G. // J. Phys.: Condens. Matter. 1992. V. 4. N. 2. P. 351. https://doi.org/10.1088/0953-8984/4/2/004
- Xu X., Ge M., Stahl K. et al. // Chem. Phys. Lett. 2009. V. 482. N. 4-6. P. 287. https://doi.org/10.1016/j.cplett.2009.10.012
- Aliahmad M., Dehbashi M. // Iran. J. Energy Environment. 2013. V. 4. N. 1. P. 49. https://doi.org/10.5829/idosi.ijee.2013.04.01.08
- Liang Y., Zheng H., Fang B. // Mater. Lett. 2013. V. 108. P. 235. https://doi.org/10.1016/j.matlet.2013.07.016
- Wang S., Xie S., Li H. et al. // Chem. Commun. 2005. N. 4. P. 507. https://doi.org/10.1039/b414913k
- Dai Z.R., Pan Z.W., Wang Z.L. // Adv. Funct. Mater. 2003. V. 13. N. 1. P. 9. https://doi.org/10.1002/adfm.200390013
- Iqbal M.Z., Wang F., Javed Q. et al. // Mater. Lett. 2012. V. 75. P. 236. https://doi.org/10.1016/j.matlet.2012.01.126
- Uchiyama H., Imai H. // Cryst. Growth Des. 2007. V. 7. N. 5. P. 841. https://doi.org/10.1021/cg070205k
- Jia Z., Zhu L., Liao G. et al. // Solid State Commun. 2004. V. 132. N. 2. P. 79. https://doi.org/10.1016/j.ssc.2004.07.028
- Iqbal M.Z., Wang F., Rafi-ud-Din et al. // Mater. Lett. 2012. V. 78. P. 50. https://doi.org/10.1016/j.matlet.2012.03.056
- Orlandi M.O., Leite E.R., Aguiar R. et al. // J. Phys. Chem. B. 2006. V. 110. N. 13. P. 6621. https://doi.org/10.1021/jp057099m
- Sun Z., Liao T., Dou Y. et al. // Nat. Commun. 2014. V. 5. N. 1. P. 3813. https://doi.org/10.1038/ncomms4813
- Timmerman M.A., Xia R., Le P.T.P. et al. // Chem. - A Eur. J. 2020. V. 26. N. 42. P. 9084. https://doi.org/10.1002/chem.201905735
- Deng D., Novoselov K.S., Fu Q. et al. // Nat. Nanotechnol. 2016. V. 11. N. 3. P. 218. https://doi.org/10.1038/nnano.2015.340
- Stoller M.D., Park S., Zhu Y. et al. // Nano Lett. 2008. V. 8. N. 10. P. 3498. https://doi.org/10.1021/nl802558y
- Osada M., Sasaki T. // Adv. Mater. 2012. V. 24. N. 2. P. 210. https://doi.org/10.1002/adma.201103241
- ten Elshof J.E., Yuan H., Gonzalez Rodriguez P. // Adv. Energy Mater. 2016. V. 6. N. 23. P. 1600355. https://doi.org/10.1002/aenm.201600355
- Liu Y., Yamaguchi A., Yang Y. et al. // Angew. Chem. Int. Ed. 2023. V. 62. N. 17. P. e202300640. https://doi.org/10.1002/anie.202300640
- Phuong P.H., Hoa H.T.M., Hung N.H. et al. // ChemistrySelect. 2021. V. 6. N. 43. P. 12246. https://doi.org/10.1002/slct.20210281750
- Zhu Y., Yang L., Guo S. et al. // Materials. 2023. V. 16. N. 2. P. 792. https://doi.org/10.3390/ma16020792
- Janardhan E., Reddy M.M., Reddy P.V. et al. // World J. Nano Sci. Eng. 2018. V. 08. N. 02. P. 33. https://doi.org/10.4236/wjnse.2018.82002
- Sangaletti L., Depero L.E., Allieri B. et al. // J. Mater. Res. 1998. V. 13. N: 9. P. 2457. https://doi.org/10.1557/JMR.1998.0343
- Liu Q., Liang L., Cao H. et al. // J. Mater. Chem. C: Mater. 2015. V. 3. N: 5. P. 1077. https://doi.org/10.1039/C4TC02184C
- Wang X., Zhang F.X., Loa I. et al. // Phys. Status Solidi B. 2004. V. 241. N: 14. P. 3168. https://doi.org/10.1002/pssb.200405231
- Giefers H., Porsch F., Wortmann G. // Physica B: Condens Matter. 2006. V. 373. N: 1. P. 76. https://doi.org/10.1016/j.physb.2005.10.136
- Gao Y., Zhao X., Yin P. et al. // Sci Rep. 2016. V. 6. N: 1. P. 20539. https://doi.org/10.1038/srep20539
- Kuang X., Liu T., Wang W. et al. // Appl. Surf. Sci. 2015. V. 351. P. 1087. https://doi.org/10.1016/j.apsusc.2015.04.190
- Talebian N., Jafarinezhad F. // Ceram Int. 2013. V. 39. N: 7. P. 8311. https://doi.org/10.1016/j.ceramint.2013.03.101
- Haspulat B., Saribel M., Kamış H. // Arab. J. Chem. 2020. V. 13. N: 1. P. 96. https://doi.org/10.1016/j.arabjc.2017.02.004
- Li X., Liang L., Cao H. et al. // Appl. Phys. Lett. 2015. V. 106. N: 13. P. 132102. https://doi.org/10.1063/1.4916664
- Kripalani D.R., Sun P.-P., Lin P. et al. // Appl. Surf. Sci. 2021. V. 538. P. 147988. https://doi.org/10.1016/j.apsusc.2020.147988
补充文件
