Metalation of ketazines. Interaction of tetralone azine with methyLLithium

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The reaction of tetralone azine with methyllithium in tetrahydrofuran results in the release of 1 mol of CH4 and the formation of the lithium salt of enamine I, which crystallizes as a dimer in which the lithium atoms are bridges between the sp3- and sp2-nitrogen atoms of the two ligands and form a six-membered LiNNLiNN metallacycle (CCDC No. 2426300). Analysis of the electron density topology using the non-covalent interaction index and the source function allowed us to determine that each lithium atom in complex I interacts with the NNCC fragment of the ligand. The study of the charge distribution in the ligand anion demonstrated that the C(2) position is the most favorable for directing the attack of various electrophilic substrates. The DFT method showed that the process of phosphorylation of the deprotonated azine tetralone PCl3 is thermodynamically more favorable by 12.6 kcal/mol than the product of phosphorylation at the nitrogen atom.

Sobre autores

V. Sushev

Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences

Email: akornev@iomc.ras.ru
Rússia, Nizhny Novgorod, Russia

N. Zolotareva

Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences

Email: akornev@iomc.ras.ru
Rússia, Nizhny Novgorod, Russia

M. Grishin

Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences

Email: akornev@iomc.ras.ru
Rússia, Nizhny Novgorod

R. Rumyantcev

Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences

Email: akornev@iomc.ras.ru
Rússia, Nizhny Novgorod

G. Fukin

Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences

Email: akornev@iomc.ras.ru
Rússia, Nizhny Novgorod

A. Kornev

Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences

Autor responsável pela correspondência
Email: akornev@iomc.ras.ru
Rússia, Nizhny Novgorod

Bibliografia

  1. Tamaru Y., Harada T., Yoshida Z. // Tetrahedron Let., 1977. V. 49. P. 4323.
  2. Tamaru Y., Harada T., Yoshida Z. // Chem. Let. 1978. P 263.
  3. Henoch F.E., Hampton K.G., Hauser C.R. // J. Am. Chem. Soc. 1969. V. 91(3). P. 676.
  4. Barluenga J., Iglesias M J., Gotor V. // J. Chem. Soc., Chem. Comm. 1987. V. 8. P. 582.
  5. Xia Y., Zhang X., Liu L. et al. // Ind. Eng. Chem. Res. 2020. V. 59. P. 18748.
  6. Safari J., Gandomi-Ravandi S., Ghotbinejad M. // J. Saudi Chem. Soc., 2016. V. 20(1). P. 20.
  7. Tamaru Y., Harada T., Yoshida Z. // J. Org. Chem. 1978. V. 43. P. 3370.
  8. Groh T., Elter G., Noltemeyer M. et al. // Main Group Met. Chem. 2000. V. 23. P. 709.
  9. Groh, T., Elter, G., Noltemeyer et al. // Organometallics. 2000. V. 19, P. 2477.
  10. Safari J., Gandomi-Ravandi S. // RSC Adv. 2014. V. 4. P. 46224.
  11. Kornev A.N., Panova Y.S., Sushev V.V. et al. // Inorg. Chem. 2019. V. 58. P. 16144.
  12. Kornev A.N., Panova Y.S., Sushev V.V. // Phosphorus, Sulfur Silicon Relat. Elem. 2020. V. 195. P. 905.
  13. Panova Yu., Khristolyubova A., Zolotareva N. et al. // Dalton Trans. 2021. V. 50. P. 5890.
  14. Kornev A.N., Sushev V.V., Panova Y.S. et al. // Inorg. Chem. 2014. V. 53. P. 3243.
  15. Han W., Zhang G., Li G. et al. // Org. Lett. 2014. V. 16. P. 3532.
  16. Rigaku Oxford Diffraction. (2022). CrysAlis Pro software system, version 1.171.42.68a, Rigaku Corporation, Wroclaw, Poland.
  17. Sheldrick G.M. //Acta Crystallogr. A. 2015. V. 71. P. 3.
  18. Sheldrick G.M. //Acta Crystallogr. C. 2015. V. 71. P. 3.
  19. Becke A.D. // J. Chem. Phys. 1993. V. 98. 5648.
  20. Lee C., Yang W., Parr R.G. // Phys. Rev. 1988. V. 37. P. 785.
  21. Stephens P.J., Devlin F.J., Chabalowski C.F. et al. // J. Phys. Chem. 1994. V. 98. P. 11623.
  22. Pritchard B. P., Altarawy D., Didier B. et al. // J. Chem. Inf. Model. 2019. V. 59. 4814.
  23. Feller D. // J. Comput. Chem. 1996. V. 17. P. 1571.
  24. Schuchardt K. L., Didier B. T., Elsethagen T. et al. // J. Chem. Inf. Model. 2007. V. 47. 1045.
  25. Dill J.D., Pople J. A. // J. Chem. Phys. 1975. V. 62. P. 2921.
  26. Ditchfield R., Hehre W.J., Pople J. // J. Chem. Phys. 1971. V. 54. 724.
  27. Frisch M.J., Trucks G.W., Schlegel H. B. et al. // Gaussian 09 Revision E.01, Gaussian, Inc., Wallingford, CT, 2009.
  28. Hariharan P.C., Pople J.A. // Theor. Chim. Acta. 1973. V. 28. P. 213.
  29. Hehre W.J., Ditchfield R., Pople J.A. // J. Chem. Phys. 1972. V. 56. P. 2257.
  30. Dovesi R., Erba A., Orlando R. et al. // WIREs Comput. Mol. Sci. 2018, V. 8. P. e1360.
  31. Momma K., Izumi F. // J. Appl. Crystallogr. 2011. V. 44. P. 1272.
  32. Jelsch C., Guillot B., Lagoutte A. et al. // J. Appl. Crystallogr. 2005. V. 38. P. 38.
  33. Bader R.F.W. // Atoms in Molecules: A Quantum Theory, Oxford: Oxford Univ., 1990.
  34. Cortes-Guzman F., Bader R.F.W. // Coord. Chem. Rev. 2005. V. 249. P. 662662.
  35. Keith T.A. AIMAll 2017. Version 17.11.14. Overland Park, KS, USA: TK Gristmill Software, 2017.
  36. Stash A.I., Tsirelson V.G. // J. Appl. Cryst. 2014. V. 47. P. 2086.
  37. Dilworth J.R. // Coord. Chem. Rev. 1976. V. 21. P. 29.
  38. Michel R., Herbst-Irmer R., Stalke D. // Organometallics. 2011. V. 30. P. 4379.
  39. Collum D.B., Kahne D., Gut S.A. et al. // J. Am. Chem. Soc. 1984. V. 106. P. 4865.
  40. Kohrt S., Dachwitz S., Daniliuc C.G. et al. // Dalton Trans. 2015. V. 44. P. 21032.
  41. Kunz K., Pflug J., Bertuleit A. et al. // Organometallics. 2000. V. 19. P. 4208.
  42. Batsanov S.S. // Inorg. Mater., 2001, V. 37. P. 871.
  43. Shannon R.D. // Acta Crystallogr. 1976, V. A32. P. 751.
  44. Bader R.F.W. Atoms in Molecules – A Quantum Theory. Oxford: Oxford Univ. Press, 1990. 458 p.
  45. Farrugia L.J., Evans C., Lentz D. et al. // J. Am. Chem. Soc. 2009. V. 131. P. 1251.
  46. Smol’yakov A.F., Dolgushin F.M., Antipin M.Yu. // Russ. Chem. Bull. 2012. V. 61. P. 2204.
  47. Lugan N., Fernandez I., Brousses R. et al. // Dalton Trans. 2013. V. 42. P. 898.
  48. Smol’yakov A.F., Dolgushin F.M., Ginzburg A.G. et al. // J. Mol. Struct. 2012. V. 1014. P. 81.
  49. Kaminski R., Herbaczynska B., Srebro M. et al. // Phys. Chem. Chem. Phys. 2011. V. 13. P. 10280.
  50. Makal A.M., Plazuk D., Zakrzewski J. et al. // Inorg. Chem. 2010. V. 49. V. 4046.
  51. Scheins S., Messerschmidt M., Gembicky M. et al. // J. Am. Chem. Soc. 2009. V. 131. P. 6154.
  52. Hey J., Andrada D.M., Michel R. et al. // Angew. Chem. Int. Ed. 2013. V. 52. P. 10365.
  53. Bader R.W.F., Gatti C. // Chem. Phys. Lett. 1998. V. 287. P. 233.
  54. Farrugia L.J., Macchi P. // J. Phys. Chem. A. 2009. V. 113. P. 10058.
  55. Gatti C. // Electron Density and Chemical Bonding II: Theoretical Charge Density Studies / Ed. Stalke D. Springer, Berlin, Heidelberg, 2012. P.193.
  56. Johnson E.R., Keinan S., Mori–Sanchez P. et al. // J. Am. Chem. Soc. 2010. V. 132. P. 6498.
  57. Contreras-Garcia J., Johnson E.R., Keinan S. et al. // J. Chem. Theory Comput. 2011, V. 7. P. 625.
  58. Contreras-Garcia J., Yang W., Johnson E.R. // J. Phys. Chem. A. 2011. V. 115. P. 12983.
  59. Fukin G.K., Cherkasov A.V., Baranov E.V. et al. // ChemistrySelect. 2019. V. 4. P. 1.
  60. Fukin G.K., Baranov E.V., Rumyantcev R.V. et al. // Struct. Chem. 2020. V. 31. P. 1841.
  61. Fukin G.K., Cherkasov A.V., Rumyantcev R.V. et al. // Mendeleev Commun. 2019. V. 29. P. 346.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).