Search

Issue
Title
Authors
Artificial intelligence technologies in gynecology
Mozes V.G., Kotov R.M., Rudaeva E.V., Elgina S.I., Mozes K.B., Vavin G.V.
Prediction of fetal growth restriction using machine learning algorithms
Kan N.E., Leonova A.A., Tyutyunnik V.L., Soldatova E.E., Ryzhova K.O., Serebryakova A.P.
The use of artificial intelligence-based web application for managing health records
Tumanov N.A.
Using machine learning to analyze the lipid profile of culture medium and predict the efficacy of assisted reproductive technologies
Drapkina Y.S., Makarova N.P., Chagovets V.V., Vasiliev R.A., Amelin V.V., Kalinina E.A.
Differential diagnosis of early-stage ovarian cancer based on the bioinformatic analysis of the blood metabolome
Iurova M.V., Tokareva A.O., Chagovets V.V., Starodubtseva N.L., Frankevich V.E.
Development and validation of an artificial intelligence-based system for predicting preterm birth using clinical data
Boldina Y.S., Ivshin A.A., Svetova K.S.
Comparison of predictive models built with different machine learning techniques using the example of predicting the outcome of assisted reproductive technologies
Drapkina Y.S., Makarova N.P., Vasiliev R.A., Amelin V.V., Kalinina E.A.
Omics data analysis using deep learning-based framework in differential diagnosis of ovarian cancer
Iurova M.V., Tokareva A.O., Chagovets V.V., Starodubtseva N.L., Frankevich V.E.
Experience in machine learning application to predict pregnancy loss after assisted reproductive technologies
Drapkina Y.S., Makarova N.P., Kalinin A.P., Vasiliev R.A., Amelin V.V.
Assessment of the impact of male factor infertility on the outcomes of assisted reproductive technology programs using machine learning techniques
Drapkina Y.S., Makarova N.P., Kulakova E.V., Kalinina E.A.
Application of various machine learning techniques to the analysis of clinical, anamnestic, and embryological data of patients undergoing assisted reproductive technologies
Drapkina Y.S., Makarova N.P., Vasiliev R.A., Amelin V.V., Frankevich V.E., Kalinina E.A.
The possibilities of using machine learning and artificial intelligence methods for morphological analysis of the placenta
Tumanova U.N., Tumanov N.A., Shchegolev A.I., Serov V.N.
Development and validation of models to predict total and early-onset preeclampsia in the first trimester of pregnancy using machine learning algorithms
Andreychenko A.E., Luchinin A.S., Ivshin A.A., Ermak A.D., Novitskiy R.E., Gusev A.V.
1 - 13 of 13 Items

Search tips:

  • Search terms are case-insensitive
  • Common words are ignored
  • By default only articles containing all terms in the query are returned (i.e., AND is implied)
  • Combine multiple words with OR to find articles containing either term; e.g., education OR research
  • Use parentheses to create more complex queries; e.g., archive ((journal OR conference) NOT theses)
  • Search for an exact phrase by putting it in quotes; e.g., "open access publishing"
  • Exclude a word by prefixing it with - or NOT; e.g. online -politics or online NOT politics
  • Use * in a term as a wildcard to match any sequence of characters; e.g., soci* morality would match documents containing "sociological" or "societal"

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).