FOTOKhIMIChESKOE RAVNOVESIE I URAVNENIE BALANSA OZONA V SLOE NOChNOGO GIDROKSILA NA MARSE
- Authors: Shaposhnikov D.S.1, Rodin A.V.1
-
Affiliations:
- Issue: Vol 59, No 6 (2025)
- Pages: 599–610
- Section: Articles
- URL: https://medbiosci.ru/0320-930X/article/view/362487
- DOI: https://doi.org/10.7868/S3034517025060036
- ID: 362487
Cite item
Abstract
Keywords
References
- Belikovich M.V., Kulikov M.Yu., Grygalashvyly M., Sonnemann G.R., Ermakova T.S., Nechaev A.A., Feigin A.M. Ozone chemical equilibrium in the extended mesopause under the nighttime conditions // Adv. Space Res. 2018. V. 61. P. 426–432. https://doi.org/10.1016/j.asr.2017.10.010
- Bertaux J.L., Gondet B., Lefèvre F., Bibring J.P., Montmessin F. First detection of O2 1.27 µm nightglow emission at Mars with OMEGA/MEX and comparison with general circulation model predictions // J. Geophys. Res. 2012. V. 117. P. E0004. https://doi.org/10.1029/2011JE003890
- Brasseur G., Solomon S. Aeronomy of the Middle Atmosphere—Chemistry and Physics of the Stratosphere and Mesosphere. 3rd edn. Dordrecht: Springer, 2005. 646 p. https://doi.org/10.1007/1-4020-3824-0
- Clancy R.T., Sandor B.J., Garcia-Munoz A., Lefèvre F., Smith M.D., Wolff M.J., Montmessin F., Murchie S.L., Nair H. First detection of Mars atmospheric hydroxyl: CRISM Near-IR measurement versus LMD GCM simulation of OH Meinel band emission in the Mars polar winter atmosphere // Icarus. 2013. V. 226. P. 272–281. https://doi.org/10.1016/j.icarus.2013.05.035
- Forget F., Hourdin F., Talagrand O. CO2 snowfall on Mars: Simulation with a general circulation model // Icarus. 1998. V. 131. P. 302–316. https://doi.org/10.1006/icar.1997.5874
- Forget F., Hourdin F., Fournier R., Hourdin C., Talagrand O., Collins M., Lewis S.R., Read P.L., Huot J.-P. Improved general circulation models of the Martian atmosphere from the surface to above 80 km // J. Geophys. Res. 1999. V. 104. P. 24155–24176 https://doi.org/10.1029/1999JE001025
- Forget F., Millour E., Montabone L., Lefèvre F. Non condensable gas enrichment and depletion in the Martian polar regions // Third Int. Workshop on The Mars Atmosphere: Modeling and Observations, held November 10-13, 2008 in Williamsburg, Virginia. LPI Contrib. 2008. № 1447. P. 9106.
- García-Munoz A., McConnell J.C., McDade I.C., Melo S.M.L. Airglow on Mars: Some model expectations for the OH Meinel bands and the O2 IR atmospheric band // Icarus. 2005. V. 176. P. 75–95. https://doi.org/10.1016/j.icarus.2005.01.006
- Grygalashvyly M., Shaposhnikov D.S., Medvedev A.S., Sonnemann G.R., Hartogh P. Simplified relations for the Martian night-time OH* suitable for the interpretation of observations // Remote Sens. 2022. V. 14. № 16. ID 3866. https://doi.org/10.3390/rs14163866
- Grygalashvyly M., Strelnikov B., Strelnikova I., Rapp M., Libken F.-J., Schiltt C., Stephan C., Eberhart M., Löhle S., Fasoulas S. Chemical heat derived from rocket-borne WADIS-2 experiment // Earth, Planets and Space. 2024. V. 76. ID 180. https://doi.org/10.1186/s40623-024-02129-x
- Körner U., Sonnemann G.R. Global three-dimensional modeling of the water vapor concentration of the mesosphere-mesopause region and implications with respect to the noctilucent cloud region // J. Geophys. Res. 2001. V. 106. P. 9639–9651. https://doi.org/10.1029/2000JD900744
- Krasnopolsky V.A. Photochemistry of the Martian atmosphere: Seasonal, latitudinal, and diurnal variations // Icarus. 2006. V. 185. P. 153–170. https://doi.org/10.1016/j.icarus.2006.06.003
- Krasnopolsky V.A. Venus night airglow: Ground-based detection of OH, observations of O2 emissions, and photochemical model // Icarus. 2010. V. 207. № 1. P. 17–27. https://doi.org/10.1016/j.icarus.2009.10.019
- Krasnopolsky V.A. Atmospheric chemistry on Venus, Earth, and Mars: Main features and comparison // Planet. and Space Sci. 2011. V. 59. № 10. P. 952–964. https://doi.org/10.1016/j.pss.2010.02.011
- Krasnopolsky V.A. Nighttime photochemical model and night airglow on Venus // Planet. and Space Sci. 2013. V. 85. P. 78–88. https://doi.org/10.1016/j.pss.2013.05.022
- Krasnopolsky V.A., Lefèvre F. Chemistry of the atmospheres of Mars, Venus, and Titan // Comparative Climatology of Terrestrial Planets. Tucson: Univ. Arizona Press, 2013. P. 231–275. https://doi.org/10.2458/azu_uapress_9780816530595-ch11
- Kulikov M.V., Belikovich M.V., Grygalashvily M., Sonnemann G.R., Ermakova T.S., Nechaev A.A., Feigin A.M. Daytime ozone loss term in the mesopause region // Ann. Geophys. 2017. V. 35. № 3. P. 677–682. https://doi.org/10.5194/angeo-35-677-2017
- Kulikov M.V., Belikovich M.V., Grygalashvily M., Sonnemann G.R., Ermakova T.S., Nechaev A.A., Feigin A.M. Nighttime ozone chemical equilibrium in the mesopause region // J. Geophys. Res. 2018. V. 123. P. 3228–3242. https://doi.org/10.1002/2017JD026717
- Kulikov M.V., Nechaev A.A., Belikovich M.V., Vorobeva E.V., Grygalashvily M., Sonnemann G.R., Feigin A.M. Boundary of nighttime ozone chemical equilibrium in the mesopause region from SABER data: Implications for derivation of atomic oxygen and atomic hydrogen // Geophys. Res. Lett. 2019. V. 46. P. 997–1004. https://doi.org/10.1029/2018GL080364
- Kulikov M.V., Belikovich M.V., Chubarov A.G., Dementeyva S.O., Feigin A.M. Boundary of nighttime ozone chemical equilibrium in the mesopause region: improved criterion of determining the boundary from satellite data // Adv. Space Res. 2023. V. 71. № 6. P. 2770–2780. https://doi.org/10.1016/j.asr.2022.11.005
- Lefèvre F., Lebonnois S., Montmessin F., Forget F. Three-dimensional modeling of ozone on Mars // J. Geophys. Res. 2004. V. 109. ID E07004. https://doi.org/10.1029/2004JE002268
- Lefèvre F., Bertaux J.-L., Clancy R.T., Encrenaz T., Fast K., Forget F., Lebonnois S., Montmessin F., Perrier S. Heterogeneous chemistry in the atmosphere of Mars // Nature. 2008. V. 454. P. 971–975. https://doi.org/10.1038/nature07116
- Millour E., Forget F., Spiga A., Vals M., Zakharov V., Montabone L., Lefèvre F., Montmessin F., Chaufray J.-Y., López-Valverde M.A., González-Galindo F., Lewis S.R., Read P.L., Desjean M.-C., Cipriani F., and S co-authors, and MCD Development Team. The Mars Climate Database (Version 5.3) // Proc. Mars Sci. Workshop “From Mars Express to ExoMars”, 27–28 February 2018 at ESAC, Madrid, Spain. 2018. ID 68.
- Mlynczak M.G., Hunt L.A., Mast J.C., Marshall B.T., Russell J.M. (III), Smith A.K., Siskind D.E., Yee J.-H., Mertens C.J., Martin-Torres F.J., Thompson R.E., Drob D.P., Gordley L.L. Atomic oxygen in the mesosphere and lower thermosphere derived from SABER: Algorithm theoretical basis and measurement uncertainty // J. Geophys. Res. 2013. V. 118. P. 5724–5735. https://doi.org/10.1002/jgrd.50401
- Mlynczak M.G., Hunt L.A., Marshall B.T., Mertens C.J., Marsh D.R., Smith A.K., Russell J.M., Siskind D.E., Gordley L.L. Atomic hydrogen in the mesopause region derived from SABER: Algorithm theoretical basis, measurement uncertainty, and results // J. Geophys. Res. 2014. V. 119. P. 3516–3526. https://doi.org/10.1002/2013JD021263
- Montabone L., Forget F., Millour E., Wilson R.J., Lewis S.R., Cantor B., Kass D., Kleinböhl A., Lemmon M.T., Smith M.D., Wolff M.J. Eight-year climatology of dust optical depth on Mars // Icarus. 2015. V. 251. P. 65–95. https://doi.org/10.1016/j.icarus.2014.12.034
- Navarro T., Madeleine J.-B., Forget F., Spiga A., Millour E., Montmessin F., Määttänen A. Global climate modeling of the Martian water cycle with improved microphysics and radiatively active water ice clouds // J. Geophys. Res. 2014. V. 119. P. 1479–1495. https://doi.org/10.1002/2013JE004550
- Nicolis G., Prigogine I. Self-organization in nonequilibrium systems from dissipative structures to order through fluctuations. New York: John Wiley & Sons, 1977. P. 491. https://doi.org/10.1002/bbpc.197800155
- Shaposhnikov D.S., Grygalashvily M., Medvedev A.S., Sonnemann G.R., Hartogh P. Analytical approximations of the characteristics of nighttime hydroxyl on Mars and intra-annual variations // Sol. Syst. Res. 2022. V. 56. № 6. P. 369–381. https://doi.org/10.1134/S0038094622330024
- Shaposhnikov D.S., Grygalashvily M., Medvedev A.S., Sonnemann G.R., Hartogh P. Morphology of the excited hydroxyl in the Martian atmosphere: A model study – Where to search for airglow on Mars? // Remote Sens. 2024. V. 16. ID 291. https://doi.org/10.3390/rs16020291
- Shimazaki T. The photochemical time constants of minor constituents and their families in the middle atmosphere // J. Atmos. Terr. Phys. 1984. V. 46. № 2. P. 173–191.
- Smith A.K., Marsh D.R., Russell J.M. (III), Mlynczak M.G., Martin-Torres F.J., Kyrölä E. Satellite observations of high nighttime ozone at the equatorial mesopause // J. Geophys. Res. 2008. V. 113. ID D17312. https://doi.org/10.1029/2008JD010066
- Smith A.K., Lopez-Puertas M., Garcia-Comas M., Tuktainen S. SABER observations of mesospheric ozone during NH late winter 2002–2009 // Geophys. Res. Lett. 2009. V. 36. ID L23804. https://doi.org/10.1029/2009GL040942
- Smith A.K., Marsh D.R., Mlynczak M.G., Mast J.C. Temporal variation of atomic oxygen in the upper mesosphere from SABER // J. Geophys. Res. 2010. V. 115. ID D18309. https://doi.org/10.1029/2009JD013434
- Sonnemann G.R., Grygalashyyky M., Berger U. Autocatalytic water vapor production as a source of large mixing ratios within the middle to upper mesosphere // J. Geophys. Res. 2005. V. 110. ID D15303. https://doi.org/10.1029/2004JD005593
- Vildez-Moreiras D., Saiz-Lopez A., Blaszczak-Boxe C.S., Manfredi J.R., Yung Y.L. Diurnal variation in Mars equatorial odd oxygen species: Chemical production and loss mechanisms // Icarus. 2020. V. 336. ID 113458. https://doi.org/10.1016/j.icarus.2019.113458
Supplementary files


