CIRCULATING TUMOR DNA AND THE EVALUATION OF THE EFFICACY OF NEOADJUVANT DRUG THERAPY IN BREAST CANCER PATIENTS

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The main characteristics of circulating tumor DNA (ctDNA) and features of its analysis are described in the review. ctDNA constitutes a small part of the cell-free DNA in cancer patients. ctDNA is currently considered as a promising marker for assessing the effectiveness of treatment, prognosis and monitoring of oncological diseases, including breast cancer (BC). A plenty of patients with BC today receive neoadjuvant therapy, the effectiveness of which determines the necessity and volume of further drug treatment. The most sensitive method for assessing the effect of neoadjuvant drug therapy may be the determination of ctDNA. ctDNA analysis provides regular dynamic monitoring of molecular changes during treatment, predicts response to neoadjuvant drug therapy and the risk of disease relapse. This method can become an additional tool for personalized therapy of BC.

About the authors

T. M Zavarykina

N. M. Emanuel Institute of Biochemical Physics of the Russian Academy of Science; “B. I. Kulakov National Medical Research Center of Obestrics, Ginecology, and Perinatology” of Ministry of Health of the Russian Federation

Email: tpaliewskaya@yandex.ru
119334 Moscow, Russia; 117997 Moscow, Russia

I. V Pronina

N. M. Emanuel Institute of Biochemical Physics of the Russian Academy of Science; “B. I. Kulakov National Medical Research Center of Obestrics, Ginecology, and Perinatology” of Ministry of Health of the Russian Federation

119334 Moscow, Russia; 117997 Moscow, Russia

P. S Mazina

N. M. Emanuel Institute of Biochemical Physics of the Russian Academy of Science; “B. I. Kulakov National Medical Research Center of Obestrics, Ginecology, and Perinatology” of Ministry of Health of the Russian Federation

119334 Moscow, Russia; 117997 Moscow, Russia

S. V Khokhlova

“B. I. Kulakov National Medical Research Center of Obestrics, Ginecology, and Perinatology” of Ministry of Health of the Russian Federation

117997 Moscow, Russia

G. T Sukhikh

“B. I. Kulakov National Medical Research Center of Obestrics, Ginecology, and Perinatology” of Ministry of Health of the Russian Federation

117997 Moscow, Russia

References

  1. Zhou, Q., Gampenrieder, S. P., Frantal, S., Rinnerthaler, G., Singer, C. F., Egle, D., Pfeiler, G., Bartsch, R., Wette, V., Pichler, A., Petru, E., Dubsky, P. C., Bago-Horvath, Z., Fesl, C., Rudas, M., Ståhlberg, A., Graf, R., Weber, S., Dandachi, N., Filipits, M., and Heitzer, E. (2022) Persistence of ctDNA in patients with breast cancer during neoadjuvant treatment is a Significant predictor of poor tumor response, Clin. Cancer Res., 28, 697-707, https://doi.org/10.1158/1078-0432.CCR-21-3231.
  2. Cheng, L., Gao, G., Zhao, C., Wang, H., Yao, C., Yu, H., Yao, J., Li, F., Guo, L., Jian, Q., Chen, X., Li, X., and Zhou, C. (2023) Personalized circulating tumor DNA detection to monitor immunotherapy efficacy and predict outcome in locally advanced or metastatic non-small cell lung cancer, Cancer Med., 12, 14317-14326, https://doi.org/10.1002/cam4.6108.
  3. Моисеенко Ф., Степанова М., Волков Н., Жабина А., Мыслик А., Мелдо А., Рысев Н., Крылова Д., Клименко В., Богданов А., Моисеенко В. (2020) Предиктивное значение динамического определения циркулирующей опухолевой ДНК на фоне терапии осимертинибом у больных немелкоклеточным раком легкого с EGFR мутацией, Вопросы Онкол., 66, 135-142, https://doi.org/10.37469/0507-3758-2020-66-2-135-142.
  4. Stasik, S., Mende, M., Schuster, C., Mahler, S., Aust, D., Tannapfel, A., Reinacher-Schick, A., Baretton, G., Krippendorf, C., Bornhäuser, M., Ehninger, G., Folprecht, G., and Thiede, C. (2022) Sensitive quantification of cell-free tumor DNA for early detection of recurrence in colorectal cancer, Front. Genet., 12, 811291, https://doi.org/10.3389/fgene.2021.811291.
  5. Полянская Е. М., Федянин М. Ю., Боярских У. А., Кечин А. А., Мороз Е. А., Храпов E. А., Оскоробин И. П., Шамовская Д. В., Алиев В. А., Мамедли З. З., Трякин А. А., Филипенко М. Л., Тюляндин С. А. (2022) Про-гностическое значение наличия в крови циркулирующей опухолевой ДНК как маркера минимального резидуального заболевания при колоректальном раке I–III стадии, Успехи Мол. Онкол., 9, 32-42, https://doi.org/10.17650/2313-805X-2022-9-2-32-42.
  6. Fei, X., Du, X., Gong, Y., Liu, J., Fan, L., Wang, J., Wang, Y., Zhu, Y., Pan, J., Dong, B., and Xue, W. (2023) Early plasma circulating tumor DNA as a potential biomarker of disease recurrence in non-metastatic prostate cancer, Cancer Res. Treat., 55, 969-977, https://doi.org/10.4143/crt.2022.1557.
  7. Yang, J., Gong, Y., Lam, V. K., Shi, Y., Guan, Y., Zhang, Y., Ji, L., Chen, Y., Zhao, Y., Qian, F., Chen, J., Li, P., Zhang, F., Wang, J., Zhang, X., Yang, L., Kopetz, S., Futreal, P. A., Zhang, J., Yi, X., and Yu, P. (2020) Deep sequencing of circulating tumor DNA detects molecular residual disease and predicts recurrence in gastric cancer, Cell Death Disease, 11, 346, https://doi.org/10.1038/s41419-020-2531-z.
  8. Hou, J. Y., Chapman, J. S., Kalashnikova, E., Pierson, W., Smith-McCune, K., Pineda, G., Vattakalam, R. M., Ross, A., Mills, M., Suarez, C. J., Davis, T., Edwards, R., Boisen, M., Sawyer, S., Wu, H. T., Dashner, S., Aushev, V. N., George, G. V., Malhotra, M., Zimmermann, B., and Ford, J. M. (2022) Circulating tumor DNA monitoring for early recurrence detection in epithelial ovarian cancer, Gynecol. Oncol., 167, 334-341, https://doi.org/10.1016/j.ygyno.2022.09.004.
  9. Fu, Y., Yang, Z., Hu, Z., Yang, Z., Pan, Y., Chen, J., Wang, J., Hu, D., Zhou, Z., Xu, L., Chen, M., and Zhang, Y.(2022) Preoperative serum ctDNA predicts early hepatocellular carcinoma recurrence and response to systemic therapies, Hepatol. Int., 16, 868-878, https://doi.org/10.1007/s12072-022-10348-1.
  10. Le Guin, C. H. D., Bornfeld, N., Bechrakis, N. E., Jabbarli, L., Richly, H., Lohmann, D. R., and Zeschnigk, M.(2021) Early detection of metastatic uveal melanoma by the analysis of tumor-specific mutations in cell-free plasma DNA, Cancer Med., 10, 5974-5982, https://doi.org/10.1002/cam4.4153.
  11. Moss, E. L., Gorsia, D. N., Collins, A., Sandhu, P., Foreman, N., Gore, A., Wood, J., Kent, C., Silcock, L., and Guttery, D. S. (2020) Utility of circulating tumor DNA for detection and monitoring of endometrial cancer recurrence and progression, Cancers, 12, 2231, https://doi.org/10.3390/cancers12082231.
  12. Zhou, M., Bui, N., Rathore, R., Sudhaman, S., George, G. V., Malashevich, A. K., Malhotra, M., Liu, M. C., Aleshin, A., and Ganjoo, K. N. (2022) Feasibility of longitudinal ctDNA assessment in patients with uterine and extra-uterine leiomyosarcoma, Cancers, 15, 157, https://doi.org/10.3390/cancers15010157.
  13. Wang, X., Yu, N., Cheng, G., Zhang, T., Wang, J., Deng, L., Li, J., Zhao, X., Xu, Y., Yang, P., Bai, N., Li, Y., and Bi, N.(2022) Prognostic value of circulating tumour DNA during post-radiotherapy surveillance in locally advanced esophageal squamous cell carcinoma, Clin. Translat. Med., 12, e1116, https://doi.org/10.1002/ctm2.1116.
  14. Loupakis, F., Sharma, S., Derouazi, M., Murgioni, S., Biason, P., Rizzato, M. D., Rasola, C., Renner, D., Shchegrova, S., Koyen Malashevich, A., Malhotra, M., Sethi, H., Zimmermann, B. G., Aleshin, A., Moshkevich, S., Billings, P. R., Sedgwick, J. D., Schirripa, M., Munari, G., Cillo, U., and Fassan, M. (2021) Detection of molecular residual dis-ease using personalized circulating tumor DNA assay in patients with colorectal cancer undergoing resection of metastases, JCO Precis. Oncol., 5, PO.21.00101, https://doi.org/10.1200/PO.21.00101.
  15. Shaw, J. A., Page, K., Blighe, K., Hava, N., Guttery, D., Ward, B., Brown, J., Ruangpratheep, C., Stebbing, J., Payne, R., Palmieri, C., Cleator, S., Walker, R. A., and Coombes, R. C. (2012) Genomic analysis of circulating cell-free DNA infers breast cancer dormancy, Genome Res., 22, 220-231, https://doi.org/10.1101/gr.123497.111.
  16. Chin, Y. M., Takahashi, Y., Chan, H. T., Otaki, M., Fujishima, M., Shibayama, T., Miki, Y., Ueno, T., Nakamura, Y., and Low, S. K. (2021) Ultradeep targeted sequencing of circulating tumor DNA in plasma of early and advanced breast cancer, Cancer Sci., 112, 454-464, https://doi.org/10.1111/cas.14697.
  17. Mandel, P., and Metais, P. (1948) Nuclear acids in human blood plasma [in French], Rep. Meet. Biol. Soc. Subsid., 142, 241-243.
  18. Tan, E. M., Schur, P. H., Carr, R. I., and Kunkel, H. G. (1966) Deoxybonucleic acid (DNA) and antibodies to DNA in the serum of patients with systemic lupus erythematosus, J. Clin. Invest., 45, 1732-1740, https://doi.org/10.1172/JCI105479.
  19. Leon, S. A., Green, A., Yaros, M. J., and Shapiro, B. (1975) Radioimmunoassay for nanogram quantities of DNA, J. Immunol. Methods, 9, 157-164, https://doi.org/10.1016/0022-1759(75)90106-4.
  20. Silva, J. M., Dominguez, G., Garcia, J. M., Gonzalez, R., Villanueva, M. J., Navarro, F., Provencio, M., San Martin, S., España, P., and Bonilla, F. (1999) Presence of tumor DNA in plasma of breast cancer patients: clinicopathological correlations, Cancer Res., 59, 3251-3256.
  21. Roth, C., Pantel, K., Müller, V., Rack, B., Kasimir-Bauer, S., Janni, W., and Schwarzenbach, H. (2011) Apopto-sis-related deregulation of proteolytic activities and high serum levels of circulating nucleosomes and DNA in blood correlate with breast cancer progression, BMC Cancer, 11, 4, https://doi.org/10.1186/1471-2407-11-4.
  22. Marsman, G., Zeerleder, S., and Luken, B. M. (2016) Extracellular histones, cell-free DNA, or nucleosomes: dif-ferences in immunostimulation, Cell Death Disease, 7, e2518, https://doi.org/10.1038/cddis.2016.410.
  23. Suzuki, N., Kamataki, A., Yamaki, J., and Homma, Y. (2008) Characterization of circulating DNA in healthy human plasma, Clin. Chim. Acta, 387, 55-58, https://doi.org/10.1016/j.cca.2007.09.001.
  24. Moss, J., Magenheim, J., Neiman, D., Zemmour, H., Loyfer, N., Korach, A., Samet, Y., Maoz, M., Druid, H., Arner, P., Fu, K. Y., Kiss, E., Spalding, K. L., Landesberg, G., Zick, A., Grinshpun, A., Shapiro, A. M. J., Grompe, M., Wittenberg, A. D., Glaser, B., and Dor, Y. (2018) Comprehensive human cell-type methylation atlas reveals or-igins of circulating cell-free DNA in health and disease, Nat. Commun., 9, 5068, https://doi.org/10.1038/s41467-018-07466-6.
  25. Thierry, A. R., El Messaoudi, S., Gahan, P. B., Anker, P., and Stroun, M. (2016) Origins, structures, and functions of circulating DNA in oncology, Cancer Metastas. Rev., 35, 347-376, https://doi.org/10.1007/s10555-016-9629-x.
  26. Gao, Y., Zhao, H., An, K., Liu, Z., Hai, L., Li, R., Zhou, Y., Zhao, W., Jia, Y., Wu, N., Li, L., Ying, J., Wang, J., Xu, B., Wu, Z., Tong, Z., He, J., and Sun, Y. (2022) Whole-genome bisulfite sequencing analysis of circulating tumour DNA for the detection and molecular classification of cancer, Clin. Translat. Med., 12, e1014, https://doi.org/10.1002/ctm2.1014.
  27. Diehl, F., Schmidt, K., Choti, M. A., Romans, K., Goodman, S., Li, M., Thornton, K., Agrawal, N., Sokoll, L., Szabo, S. A., Kinzler, K. W., Vogelstein, B., and Diaz, L. A., Jr. (2008) Circulating mutant DNA to assess tumor dynamics, Nat. Med., 14, 985-990, https://doi.org/10.1038/nm.1789.
  28. Crowley, E., Di Nicolantonio, F., Loupakis, F., and Bardelli, A. (2013) Liquid biopsy: monitoring cancer-genetics in the blood, Nat. Rev. Clin. Oncol., 10, 472-484, https://doi.org/10.1038/nrclinonc.2013.110.
  29. Diaz, L. A., Jr, and Bardelli, A. (2014) Liquid biopsies: genotyping circulating tumor DNA, J. Clin. Oncol., 32, 579- 586, https://doi.org/10.1200/JCO.2012.45.2011.
  30. Risberg, B., Tsui, D. W. Y., Biggs, H., Ruiz-Valdepenas Martin de Almagro, A., Dawson, S. J., Hodgkin, C., Jones, L., Parkinson, C., Piskorz, A., Marass, F., Chandrananda, D., Moore, E., Morris, J., Plagnol, V., Rosenfeld, N., Caldas, C., Brenton, J. D., and Gale, D. (2018) Effects of collection and processing procedures on plasma circulating cell-free DNA from cancer patients, J. Mol. Diagn., 20, 883-892, https://doi.org/10.1016/j.jmoldx.2018.07.005.
  31. Markus, H., Contente-Cuomo, T., Farooq, M., Liang, W. S., Borad, M. J., Sivakumar, S., Gollins, S., Tran, N. L., Dhruv, H. D., Berens, M. E., Bryce, A., Sekulic, A., Ribas, A., Trent, J. M., LoRusso, P. M., and Murtaza, M. (2018) Evaluation of pre-analytical factors affecting plasma DNA analysis, Sci. Rep., 8, 7375, https://doi.org/10.1038/s41598-018-25810-0.
  32. Zhao, Y., Li, Y., Chen, P., Li, S., Luo, J., and Xia, H. (2019) Performance comparison of blood collection tubes as liquid biopsy storage system for minimizing cfDNA contamination from genomic DNA, J. Clin. Lab. Anal., 33, e22670, https://doi.org/10.1002/jcla.22670.
  33. Meddeb, R., Pisareva, E., and Thierry, A. R. (2019) Guidelines for the preanalytical conditions for analyzing circulating cell-free DNA, Clin. Chem., 65, 623-633, https://doi.org/10.1373/clinchem.2018.298323.
  34. Nesic, M., Bodker, J. S., Terp, S. K., and Dybkaer, K. (2021) Optimization of preanalytical variables for cfDNA processing and detection of ctDNA in archival plasma samples, Biomed. Res. Int., 5585148, https://doi.org/10.1155/2021/5585148.
  35. Cohen, J. D., Li, L., Wang, Y., Thoburn, C., Afsari, B., Danilova, L., Douville, C., Javed, A. A., Wong, F., Mattox, A., Hruban, R. H., Wolfgang, C. L., Goggins, M. G., Dal Molin, M., Wang, T. L., Roden, R., Klein, A. P., Ptak, J., Dobbyn, L., Schaefer, J., and Papadopoulos, N. (2018) Detection and localization of surgically resectable cancers with a multi-analyte blood test, Science, 359, 926-930, https://doi.org/10.1126/science.aar3247.
  36. Jiménez-Rodríguez, B., Alba-Bernal, A., López-López, E., Quirós-Ortega, M. E., Carbajosa, G., Garrido-Aranda, A., Álvarez, M., Godoy-Ortiz, A., Queipo-Ortuño, M. I., Vicioso, L., Díaz-Córdoba, G., Roldán-Díaz, M. D., Velasco- Suelto, J., Hernando, C., Bermejo, B., Julve-Parreño, A., Lluch, A., Pascual, J., Comino-Méndez, I., and Alba, E.(2022) Development of a novel NGS methodology for ultrasensitive circulating tumor DNA detection as a tool for early-stage breast cancer diagnosis, Int. J. Mol. Sci., 24, 146, https://doi.org/10.3390/ijms24010146.
  37. Rodriguez, B. J., Córdoba, G. D., Aranda, A. G., Álvarez, M., Vicioso, L., Pérez, C. L., Hernando, C., Bermejo, B., Parreño, A. J., Lluch, A., Ryder, M. B., Jones, F. S., Fredebohm, J., Holtrup, F., Queipo-Ortuño, M. I., and Alba, E.(2019) Detection of TP53 and PIK3CA mutations in circulating tumor DNA using next-generation sequenc-ing in the screening process for early breast cancer diagnosis, J. Clin. Med., 8, 1183, https://doi.org/10.3390/jcm8081183.
  38. Turner, N. C., Swift, C., Jenkins, B., Kilburn, L., Coakley, M., Beaney, M., Fox, L., Goddard, K., Garcia-Murillas, I., Proszek, P., Hall, P., Harper-Wynne, C., Hickish, T., Kernaghan, S., Macpherson, I. R., Okines, A. F. C., Palmieri, C., Perry, S., Randle, K., Snowdon, C., and c-TRAK TN investigators (2023) Results of the c-TRAK TN trial: a clin-ical trial utilising ctDNA mutation tracking to detect molecular residual disease and trigger intervention in patients with moderate- and high-risk early-stage triple-negative breast cancer, Ann. Oncol., 34, 200-211, https://doi.org/10.1016/j.annonc.2022.11.005.
  39. Garcia-Murillas, I., Schiavon, G., Weigelt, B., Ng, C., Hrebien, S., Cutts, R. J., Cheang, M., Osin, P., Nerurkar, A., Kozarewa, I., Garrido, J. A., Dowsett, M., Reis-Filho, J. S., Smith, I. E., and Turner, N. C. (2015) Mutation track-ing in circulating tumor DNA predicts relapse in early breast cancer, Sci. Translat. Med., 7, 302ra133, https://doi.org/10.1126/scitranslmed.aab0021.
  40. Beaver, J. A., Jelovac, D., Balukrishna, S., Cochran, R., Croessmann, S., Zabransky, D. J., Wong, H. Y., Toro, P. V., Cidado, J., Blair, B. G., Chu, D., Burns, T., Higgins, M. J., Stearns, V., Jacobs, L., Habibi, M., Lange, J., Hurley, P. J., Lauring, J., VanDenBerg, D., and Park, B. H. (2014) Detection of cancer DNA in plasma of pa-tients with early-stage breast cancer, Clin. Cancer Res., 20, 2643-2650, https://doi.org/10.1158/1078-0432. CCR-13-2933.
  41. Garcia-Murillas, I., Chopra, N., Comino-Méndez, I., Beaney, M., Tovey, H., Cutts, R. J., Swift, C., Kriplani, D., Afentakis, M., Hrebien, S., Walsh-Crestani, G., Barry, P., Johnston, S. R. D., Ring, A., Bliss, J., Russell, S., Evans, A., Skene, A., Wheatley, D., Dowsett, M., and Turner, N. C. (2019) Assessment of molecular relapse detection in early-stage breast cancer, JAMA Oncol., 5, 1473-1478, https://doi.org/10.1001/jamaoncol.2019.1838.
  42. Dawson, S. J., Tsui, D. W., Murtaza, M., Biggs, H., Rueda, O. M., Chin, S. F., Dunning, M. J., Gale, D., Forshew, T., Mahler-Araujo, B., Rajan, S., Humphray, S., Becq, J., Halsall, D., Wallis, M., Bentley, D., Caldas, C., and Rosenfeld, N. (2013) Analysis of circulating tumor DNA to monitor metastatic breast cancer, New Eng. J. Med., 368, 1199-1209, https://doi.org/10.1056/NEJMoa1213261.
  43. Murtaza, M., Dawson, S. J., Pogrebniak, K., Rueda, O. M., Provenzano, E., Grant, J., Chin, S. F., Tsui, D. W. Y., Marass, F., Gale, D., Ali, H. R., Shah, P., Contente-Cuomo, T., Farahani, H., Shumansky, K., Kingsbury, Z., Humphray, S., Bentley, D., Shah, S. P., Wallis, M., and Caldas, C. (2015) Multifocal clonal evolution charac-terized using circulating tumour DNA in a case of metastatic breast cancer, Nat. Commun., 6, 8760, https://doi.org/10.1038/ncomms9760.
  44. Magbanua, M. J. M., Swigart, L. B., Wu, H. T., Hirst, G. L., Yau, C., Wolf, D. M., Tin, A., Salari, R., Shchegrova, S., Pawar, H., Delson, A. L., DeMichele, A., Liu, M. C., Chien, A. J., Tripathy, D., Asare, S., Lin, C. J., Billings, P., Aleshin, A., Sethi, H., and van ‘t Veer, L. J. (2021) Circulating tumor DNA in neoadjuvant-treated breast cancer reflects response and survival, Ann. Oncol., 32, 229-239, https://doi.org/10.1016/j.annonc.2020.11.007.
  45. Yi, Z., Ma, F., Rong, G., Guan, Y., Li, C., and Xu, B. (2020) Clinical spectrum and prognostic value of TP53 mu-tations in circulating tumor DNA from breast cancer patients in China, Cancer Commun., 40, 260-269, https://doi.org/10.1002/cac2.12032.
  46. Li, X., Lu, J., Zhang, L., Luo, Y., Zhao, Z., and Li, M. (2020) Clinical implications of monitoring ESR1 mutations by circulating tumor DNA in estrogen receptor positive metastatic breast cancer: a pilot study, Translat. Oncol., 13, 321-328, https://doi.org/10.1016/j.tranon.2019.11.007.
  47. Cristofanilli, M., Rugo, H. S., Im, S. A., Slamon, D. J., Harbeck, N., Bondarenko, I., Masuda, N., Colleoni, M., DeMichele, A., Loi, S., Iwata, H., O’Leary, B., André, F., Loibl, S., Bananis, E., Liu, Y., Huang, X., Kim, S., Lechuga Frean, M. J., and Turner, N. C. (2022) Overall survival with palbociclib and fulvestrant in women with HR+/HER2– ABC: updated exploratory analyses of PALOMA-3, a double-blind, phase III randomized study, Clin. Cancer Res., 28, 3433-3442, https://doi.org/10.1158/1078-0432.CCR-22-0305.
  48. Berger, F., Marce, M., Delaloge, S., Hardy-Bessard, A. C., Bachelot, T., Bièche, I., Pradines, A., De La Motte Rouge, T., Canon, J. L., André, F., Arnould, L., Clatot, F., Lemonnier, J., Marques, S., Bidard, F. C., and PADA-1 investigators (2022) Randomised, open-label, multicentric phase III trial to evaluate the safety and efficacy of palbociclib in combination with endocrine therapy, guided by ESR1 mutation monitoring in oestrogen recep-tor-positive, HER2-negative metastatic breast cancer patients: study design of PADA-1, BMJ Open, 12, e055821, https://doi.org/10.1136/bmjopen-2021-055821.
  49. Tolaney, S. M., Toi, M., Neven, P., Sohn, J., Grischke, E. M., Llombart-Cussac, A., Soliman, H., Wang, H., Wijayawardana, S., Jansen, V. M., Litchfield, L. M., and Sledge, G. W. (2022) Clinical significance of PIK3CA and ESR1 mutations in circulating tumor DNA: analysis from the MONARCH 2 study of abemaciclib plus ful-vestrant, Clin. Cancer Res., 28, 1500-1506, https://doi.org/10.1158/1078-0432.CCR-21-3276.
  50. Di Leo, A., Johnston, S., Lee, K. S., Ciruelos, E., Lønning, P. E., Janni, W., O’Regan, R., Mouret-Reynier, M. A., Kalev, D., Egle, D., Csőszi, T., Bordonaro, R., Decker, T., Tjan-Heijnen, V. C. G., Blau, S., Schirone, A., Weber, D., El-Hashimy, M., Dharan, B., Sellami, D., and Bachelot, T. (2018) Buparlisib plus fulvestrant in postmenopausal women with hormone-receptor-positive, HER2-negative, advanced breast cancer progressing on or after mTOR inhibition (BELLE-3): a randomised, double-blind, placebo-controlled, phase 3 trial, Lancet Oncol., 19, 87-100, https://doi.org/10.1016/S1470-2045(17)30688-5.
  51. Sabatier, R., Vicier, C., Garnier, S., Guille, A., Carbuccia, N., Isambert, N., Dalenc, F., Robert, M., Levy, C., Pakradouni, J., Adelaïde, J., Chaffanet, M., Sfumato, P., Mamessier, E., Bertucci, F., and Goncalves, A. (2022) Circulating tumor DNA predicts efficacy of a dual AKT/p70S6K inhibitor (LY2780301) plus paclitaxel in met-astatic breast cancer: plasma analysis of the TAKTIC phase IB/II study, Mol. Oncol., 16, 2057-2070, https://doi.org/10.1002/1878-0261.13188.
  52. Lyu, D., Liu, B., Lan, B., Sun, X., Li, L., Zhai, J., Qian, H., and Ma, F. (2022) Clinical value of next-gen-eration sequencing in guiding decisions regarding endocrine therapy for advanced HR-positive/HER-2-negative breast cancer, Chinese J. Cancer Res., 34, 343-352, https://doi.org/10.21147/j.issn.1000-9604. 2022.04.03.
  53. Yi, Z., Ma, F., Rong, G., Liu, B., Guan, Y., Li, J., Sun, X., Wang, W., Guan, X., Mo, H., Wang, J., Qian, H., and Xu, B. (2021) The molecular tumor burden index as a response evaluation criterion in breast cancer, Signal Transduct. Target. Ther., 6, 251, https://doi.org/10.1038/s41392-021-00662-9.
  54. Pantel, K., and Alix-Panabières, C. (2010) Circulating tumour cells in cancer patients: challenges and perspec-tives, Trends Mol. Med., 16, 398-406, https://doi.org/10.1016/j.molmed.2010.07.001.
  55. Nikanjam, M., Kato, S., and Kurzrock, R. (2022) Liquid biopsy: current technology and clinical applications, J. Hematol. Oncol., 15, 131, https://doi.org/10.1186/s13045-022-01351-y.
  56. Sama, S., Le, T., Ullah, A., Elhelf, I. A., Kavuri, S. K., and Karim, N. A. (2022) The role of serial liquid biopsy in the management of metastatic non-small cell lung cancer (NSCLC), Clinics Practice, 12, 419-424, https://doi.org/10.3390/clinpract12030046.
  57. El Messaoudi, S., Rolet, F., Mouliere, F., and Thierry, A. R. (2013) Circulating cell free DNA: preanalytical con-siderations, Clin. Chim. Acta, 424, 222-230, https://doi.org/10.1016/j.cca.2013.05.022.
  58. Lin, C., Liu, X., Zheng, B., Ke, R., and Tzeng, C. M. (2021) Liquid biopsy, ctDNA diagnosis through NGS, Life, 11, 890, https://doi.org/10.3390/life11090890.
  59. Pons-Belda, O. D., Fernandez-Uriarte, A., and Diamandis, E. P. (2021) Can circulating tumor DNA support a suc-cessful screening test for early cancer detection? The grail paradigm, Diagnostics, 11, 2171, https://doi.org/10.3390/diagnostics11122171.
  60. Lu, L., Bi, J., and Bao, L. (2018) Genetic profiling of cancer with circulating tumor DNA analysis, J. Genet. Ge-nomics, 45, 79-85, https://doi.org/10.1016/j.jgg.2017.11.006.
  61. Kastrisiou, M., Zarkavelis, G., Pentheroudakis, G., and Magklara, A. (2019) Clinical application of next-generation sequencing as a liquid biopsy technique in advanced colorectal cancer: a trick or a treat? Cancers, 11, 1573, https://doi.org/10.3390/cancers11101573.
  62. Yi, K., Wang, X., Filippov, S. K., and Zhang, H. (2023) Emerging ctDNA detection strategies in clinical cancer theranostics, Smart Med., 2, e20230031, https://doi.org/10.1002/SMMD.20230031.
  63. Ou, C. Y., Vu, T., Grunwald, J. T., Toledano, M., Zimak, J., Toosky, M., Shen, B., Zell, J. A., Gratton, E., Abram, T. J., and Zhao, W. (2019) An ultrasensitive test for profiling circulating tumor DNA using integrated comprehensive droplet digital detection, Lab Chip, 19, 993-1005, https://doi.org/10.1039/c8lc01399c.
  64. Rothé, F., Silva, M. J., Venet, D., Campbell, C., Bradburry, I., Rouas, G., de Azambuja, E., Maetens, M., Fumagalli, D., Rodrik-Outmezguine, V., Di Cosimo, S., Rosa, D., Chia, S., Wardley, A., Ueno, T., Janni, W., Huober, J., Baselga, J., Piccart, M., Loi, S., and Ignatiadis, M. (2019) Circulating tumor DNA in HER2-amplified breast cancer: a translational research substudy of the NeoALTTO phase III trial, Clin. Cancer Res., 25, 3581-3588, https://doi.org/10.1158/1078-0432.CCR-18-2521.
  65. Shaw, J. A., Page, K., Wren, E., de Bruin, E. C., Kalashnikova, E., Hastings, R., McEwen, R., Zhang, E., Wadsley, M., Acheampong, E., Renner, D., Gleason, K. L. T., Ambasager, B., Stetson, D., Fernandez-Garcia, D., Guttery, D., Allsopp, R. C., Rodriguez, A., Zimmermann, B., Sethi, H., and Coombes, R. C. (2024) Serial postoperative circu-lating tumor DNA assessment has strong prognostic value during long-term follow-up in patients with breast cancer, JCO Prec. Oncol., 8, e2300456, https://doi.org/10.1200/PO.23.00456.
  66. Reinert, T., Henriksen, T. V., Christensen, E., Sharma, S., Salari, R., Sethi, H., Knudsen, M., Nordentoft, I., Wu, H. T., Tin, A. S., Heilskov Rasmussen, M., Vang, S., Shchegrova, S., Frydendahl Boll Johansen, A., Srinivasan, R., Assaf, Z., Balcioglu, M., Olson, A., Dashner, S., Hafez, D., and Lindbjerg Andersen, C. (2019) Analysis of plasma cell-free DNA by ultradeep sequencing in patients with stages I to III colorectal cancer, JAMA Oncol., 5, 1124-1131, https://doi.org/10.1001/jamaoncol.2019.0528.
  67. Abbosh, C., Birkbak, N. J., Wilson, G. A., Jamal-Hanjani, M., Constantin, T., Salari, R., Le Quesne, J., Moore, D. A., Veeriah, S., Rosenthal, R., Marafioti, T., Kirkizlar, E., Watkins, T. B. K., McGranahan, N., Ward, S., Martinson, L., Riley, J., Fraioli, F., Al Bakir, M., Grönroos, E., and Swanton, C. (2017) Phylogenetic ctDNA analysis depicts ear-ly-stage lung cancer evolution, Nature, 545, 446-451, https://doi.org/10.1038/nature22364.
  68. Diao, Z., Han, D., Zhang, R., and Li, J. (2021) Metagenomics next-generation sequencing tests take the stage in the diagnosis of lower respiratory tract infections, J. Adv. Res., 38, 201-212, https://doi.org/10.1016/j.jare. 2021.09.012.
  69. Bai, Y., Wang, Z., Liu, Z., Liang, G., Gu, W., and Ge, Q. (2020) Technical progress in circulating tumor DNA analy-sis using next generation sequencing, Mol. Cell. Probes, 49, 101480, https://doi.org/10.1016/j.mcp.2019.101480.
  70. Santonja, A., Cooper, W. N., Eldridge, M. D., Edwards, P. A. W., Morris, J. A., Edwards, A. R., Zhao, H., Heider, K., Couturier, D. L., Vijayaraghavan, A., Mennea, P., Ditter, E. J., Smith, C. G., Boursnell, C., Manzano García, R., Rueda, O. M., Beddowes, E., Biggs, H., Sammut, S. J., Rosenfeld, N., and Gale, D. (2023) Comparison of tumor- informed and tumor-naïve sequencing assays for ctDNA detection in breast cancer, EMBO Mol. Med., 15, e16505, https://doi.org/10.15252/emmm.202216505.
  71. Willis, J., Lefterova, M. I., Artyomenko, A., Kasi, P. M., Nakamura, Y., Mody, K., Catenacci, D. V. T., Fakih, M., Barbacioru, C., Zhao, J., Sikora, M., Fairclough, S. R., Lee, H., Kim, K. M., Kim, S. T., Kim, J., Gavino, D., Benavides, M., Peled, N., Nguyen, T., and Odegaard, J. I. (2019) Validation of microsatellite instability de-tection using a comprehensive plasma-based genotyping panel, CLIN, Cancer Res., 25, 7035-7045, https://doi.org/10.1158/1078-0432.CCR-19-1324.
  72. Janni, W., Rack, B., Friedl, T. W. P., Hartkopf, A. D., Wiesmüller, L., Pfister, K., Mergel, F., Fink, A., Braun, T., Mehmeti, F., Uhl, N., De Gregorio, A., Huober, J., Fehm, T., Müller, V., Rich, T. A., Dustin, D. J., Zhang, S., and Huesmann, S. T. (2025) Detection of minimal residual disease and prediction of recurrence in breast cancer using a plasma-only circulating tumor DNA assay, ESMO Open, 10, 104296, https://doi.org/10.1016/j.esmoop.2025.104296.
  73. Parsons, H. A., Blewett, T., Chu, X., Sridhar, S., Santos, K., Xiong, K., Abramson, V. G., Patel, A., Cheng, J., Brufsky, A., Rhoades, J., Force, J., Liu, R., Traina, T. A., Carey, L. A., Rimawi, M. F., Miller, K. D., Stearns, V., Specht, J., Falkson, C., and Adalsteinsson, V. A. (2023) Circulating tumor DNA association with residual cancer burden after neoadjuvant chemotherapy in triple-negative breast cancer in TBCRC 030, Ann. Oncol., 34, 899-906, https://doi.org/10.1016/j.annonc.2023.08.004.
  74. Tie, J., Wang, Y., Cohen, J., Li, L., Hong, W., Christie, M., Wong, H. L., Kosmider, S., Wong, R., Thomson, B., Choi, J., Fox, A., Field, K., Burge, M., Shannon, J., Kotasek, D., Tebbutt, N. C., Karapetis, C., Underhill, C., Haydon, A., and Gibbs, P. (2021) Circulating tumor DNA dynamics and recurrence risk in patients undergoing curative intent resection of colorectal cancer liver metastases: a prospective cohort study, PLoS Med., 18, e1003620, https://doi.org/10.1371/journal.pmed.1003620.
  75. Parsons, H. A., Rhoades, J., Reed, S. C., Gydush, G., Ram, P., Exman, P., Xiong, K., Lo, C. C., Li, T., Fleharty, M., Kirkner, G. J., Rotem, D., Cohen, O., Yu, F., Fitarelli-Kiehl, M., Leong, K. W., Hughes, M. E., Rosenberg, S. M., Collins, L. C., Miller, K. D., and Adalsteinsson, V. A. (2020) Sensitive detection of minimal residual disease in patients treated for early-stage Breast cancer, Clin. Cancer Res., 26, 2556-2564, https://doi.org/10.1158/1078-0432. CCR-19-3005.
  76. Radovich, M., Jiang, G., Hancock, B. A., Chitambar, C., Nanda, R., Falkson, C., Lynce, F. C., Gallagher, C., Isaacs, C., Blaya, M., Paplomata, E., Walling, R., Daily, K., Mahtani, R., Thompson, M. A., Graham, R., Cooper, M. E., Pavlick, D. C., Albacker, L. A., Gregg, J., and Schneider, B. P. (2020) Association of circulating tumor DNA and circulating tumor cells after neoadjuvant chemotherapy with disease recurrence in patients with triple-nega-tive breast cancer: preplanned secondary analysis of the BRE12-158 randomized clinical trial, JAMA Oncol., 6, 1410-1415, https://doi.org/10.1001/jamaoncol.2020.2295.
  77. Zaikova, E., Cheng, B. Y. C., Cerda, V., Kong, E., Lai, D., Lum, A., Bates, C., den Brok, W., Kono, T., Bourque, S., Chan, A., Feng, X., Fenton, D., Gurjal, A., Levasseur, N., Lohrisch, C., Roberts, S., Shenkier, T., Simmons, C., Taylor, S., and Gelmon, K. (2024) Circulating tumour mutation detection in triple-negative breast cancer as an adjunct to tissue response assessment, NPJ Breast Cancer, 10, 3, https://doi.org/10.1038/s41523-023-00607-1.
  78. Chan, H. T., Chin, Y. M., Nakamura, Y., and Low, S. K. (2020) Clonal hematopoiesis in liquid biopsy: from bio-logical noise to valuable clinical implications, Cancers, 12, 2277, https://doi.org/10.3390/cancers12082277.
  79. Tie, J., Cohen, J. D., Wang, Y., Li, L., Christie, M., Simons, K., Elsaleh, H., Kosmider, S., Wong, R., Yip, D., Lee, M., Tran, B., Rangiah, D., Burge, M., Goldstein, D., Singh, M., Skinner, I., Faragher, I., Croxford, M., Bampton, C., and Gibbs, P. (2019) Serial circulating tumour DNA analysis during multimodality treatment of locally advanced rectal cancer: a prospective biomarker study, Gut, 68, 663-671, https://doi.org/10.1136/gutjnl-2017-315852.
  80. Cutts, R., Ulrich, L., Beaney, M., Robert, M., Coakley, M., Bunce, C., Crestani, G. W., Hrebien, S., Kalashnikova, E., Wu, H. T., Dashner, S., Sethi, H., Aleshin, A., Liu, M., Ring, A., Okines, A., Smith, I. E., Barry, P., Turner, N. C., and Garcia-Murillas, I. (2024) Association of post-operative ctDNA detection with outcomes of patients with early breast cancers, ESMO Open, 9, 103687, https://doi.org/10.1016/j.esmoop.2024.103687.
  81. Chen, J. H., Addanki, S., Roy, D., Bassett, R., Kalashnikova, E., Spickard, E., Kuerer, H. M., Meas, S., Sarli, V. N., Korkut, A., White, J. B., Rauch, G. M., Tripathy, D., Arun, B. K., Barcenas, C. H., Yam, C., Sethi, H., Rodriguez, A. A., Liu, M. C., Moulder, S. L., and Lucci, A. (2024) Monitoring response to neoadjuvant chemotherapy in triple negative breast cancer using circulating tumor DNA, BMC Cancer, 24, 1016, https://doi.org/10.1186/s12885-024-12689-6.
  82. Coakley, M., Villacampa, G., Sritharan, P., Swift, C., Dunne, K., Kilburn, L., Goddard, K., Pipinikas, C., Rojas, P., Emmett, W., Hall, P., Harper-Wynne, C., Hickish, T., Macpherson, I., Okines, A., Wardley, A., Wheatley, D., Waters, S., Palmieri, C., Winter, M., and Turner, N. C. (2024) Comparison of circulating tumor DNA assays for molecular residual disease detection in early-stage triple-negative breast cancer, Clin. Cancer Res., 30, 895-903, https://doi.org/10.1158/1078-0432.CCR-23-2326.
  83. Coombes, R. C., Page, K., Salari, R., Hastings, R. K., Armstrong, A., Ahmed, S., Ali, S., Cleator, S., Kenny, L., Stebbing, J., Rutherford, M., Sethi, H., Boydell, A., Swenerton, R., Fernandez-Garcia, D., Gleason, K. L. T., Goddard, K., Guttery, D. S., Assaf, Z. J., Wu, H. T., and Shaw, J. A. (2019) Personalized detection of circulating tu-mor DNA antedates breast cancer metastatic recurrence, Clin. Cancer Res., 25, 4255-4263, https://doi.org/10.1158/ 1078-0432.CCR-18-3663.
  84. Comino-Méndez, I., Velasco-Suelto, J., Pascual, J., López-López, E., Quirós-Ortega, M. E., Gaona-Romero, C., Martín-Muñoz, A., Losana, P., Heredia, Y., Alba, E., and Guerrero-Zotano, A. (2025) Identification of minimal residual disease using the clonesight test for ultrasensitive ctDNA detection to anticipate late relapse in early breast cancer, Breast Cancer Res., 27, 65, https://doi.org/10.1186/s13058-025-02016-7.
  85. Wang, K., Peng, Z., Lin, X., Nian, W., Zheng, X., and Wu, J. (2022) Electrochemical biosensors for circulating tumor DNA detection, Biosensors, 12, 649, https://doi.org/10.3390/bios12080649.
  86. Uygun, Z. O., Yeniay, L., Gi Rgi N Sağın, F. (2020) CRISPR-dCas9 powered impedimetric biosensor for label-free detection of circulating tumor DNAs, Anal. Chim. Acta, 1121, 35-41, https://doi.org/10.1016/j.aca.2020.04.009.
  87. Zhang, W., Dai, Z., Liu, X., and Yang, J. (2018) High-performance electrochemical sensing of circulating tumor DNA in peripheral blood based on poly-xanthurenic acid functionalized MoS2 nanosheets, Biosensors Bioelec-tronics, 105, 116-120, https://doi.org/10.1016/j.bios.2018.01.038.
  88. Povedano, E., Vargas, E., Montiel, V. R., Torrente-Rodríguez, R. M., Pedrero, M., Barderas, R., Segundo-Acosta, P. S., Peláez-García, A., Mendiola, M., Hardisson, D., Campuzano, S., and Pingarrón, J. M. (2018) Electrochemical affinity biosensors for fast detection of gene-specific methylations with no need for bisulfite and amplification treatments, Sci. Rep., 8, 6418, https://doi.org/10.1038/s41598-018-24902-1.
  89. Wang, L., Zhuang, Y., Yu, Y., Guo, Z., Guo, Q., Qiao, L., Wang, X., Liang, X., Zhang, P., Li, Q., Huang, C., Cong, R., Li, Y., Che, B., Xiong, H., Lin, G., Rao, M., Hu, R., Wang, W., Yang, G., and Lou, J. (2023) An ultrasensitive meth-od for detecting mutations from short and rare cell-free DNA, Biosensors Bioelectronics, 238, 115548, https://doi.org/10.1016/j.bios.2023.115548.
  90. Li, D., Chen, H., Fan, K., Labunov, V., Lazarouk, S., Yue, X., Liu, C., Yang, X., Dong, L., and Wang, G. (2021) A supersensitive silicon nanowire array biosensor for quantitating tumor marker ctDNA, Biosensors Bioelectronics, 181, 113147, https://doi.org/10.1016/j.bios.2021.113147.
  91. Nguyen, A. H., Sim, S. J. (2015) Nanoplasmonic biosensor: detection and amplification of dual bio-signatures of circulating tumor DNA, Biosensors Bioelectronics, 67, 443-449, https://doi.org/10.1016/j.bios.2014.09.003.
  92. Miao, P., Chai, H., Tang, Y. (2022) DNA hairpins and dumbbell-wheel transitions amplified walking nanomachine for ultrasensitive nucleic acid detection, ACS Nano, 16, 4726-4733, https://doi.org/10.1021/acsnano.1c11582.
  93. Liu, F., Peng, J., Lei, Y. M., Liu, R. S., Jin, L., Liang, H., Liu, H. F., Ma, S. Y., Zhang, X. H., Zhang, Y. P., Li, C. P., and Zhao, H. (2022) Electrochemical detection of ctDNA mutation in non-small cell lung cancer based on CRISPR/Cas12a system, Sensors Actuators B Chem., 362, 131807, https://doi.org/10.1016/j.snb.2022.131807.
  94. Povedano, E., Montiel, V. R., Valverde, A., Navarro-Villoslada, F., Yáñez-Sedeño, P., Pedrero, M., Montero-Calle, A., Barderas, R., Peláez-García, A., Mendiola, M., Hardisson, D., Feliú, J., Camps, J., Rodríguez-Tomàs, E., Joven, J., Arenas, M., Campuzano, S., and Pingarrón, J. M. (2019) Versatile electroanalytical bioplatforms for simultaneous determination of cancer-related DNA 5-methyl- and 5-hydroxymethyl-cytosines at glob-al and gene-specific levels in human serum and tissues, ACS Sensors, 4, 227-234, https://doi.org/10.1021/acssensors.8b01339.
  95. Wang, M., Hou, L., Chen, M., Zhou, Y., Liang, Y., Wang, S., Jiang, J., and Zhang, Y. (2017) Neoadjuvant chemo-therapy creates surgery opportunities for inoperable locally advanced breast cancer, Sci. Rep., 7, 44673, https://doi.org/10.1038/srep44673.
  96. Derks, M. G. M., and van de Velde, C. J. H. (2018) Neoadjuvant chemotherapy in breast cancer: more than just downsizing, Lancet Oncol., 19, 2-3, https://doi.org/10.1016/S1470-2045(17)30914-2.
  97. Early Breast Cancer Trialists’ Collaborative Group (EBCTCG) (2018) Long-term outcomes for neoadjuvant versus adjuvant chemotherapy in early breast cancer: meta-analysis of individual patient data from ten randomised trials, Lancet Oncol., 19, 27-39, https://doi.org/10.1016/S1470-2045(17)30777-5.
  98. Von Minckwitz, G., Untch, M., Blohmer, J. U., Costa, S. D., Eidtmann, H., Fasching, P. A., Gerber, B., Eiermann, W., Hilfrich, J., Huober, J., Jackisch, C., Kaufmann, M., Konecny, G. E., Denkert, C., Nekljudova, V., Mehta, K., and Loibl, S. (2012) Definition and impact of pathologic complete response on prognosis after neoadjuvant che-motherapy in various intrinsic breast cancer subtypes, J. Clin. Oncol., 30, 1796-1804, https://doi.org/10.1200/JCO.2011.38.8595.
  99. Symmans, W. F., Wei, C., Gould, R., Yu, X., Zhang, Y., Liu, M., Walls, A., Bousamra, A., Ramineni, M., Sinn, B., Hunt, K., Buchholz, T. A., Valero, V., Buzdar, A. U., Yang, W., Brewster, A. M., Moulder, S., Pusztai, L., Hatzis, C., and Hortobagyi, G. N. (2017) Long-term prognostic risk after neoadjuvant chemotherapy associated with residual cancer burden and breast cancer subtype, J. Clin. Oncol., 35, 1049-1060, https://doi.org/10.1200/JCO.2015.63.1010.
  100. Symmans, W. F., Peintinger, F., Hatzis, C., Rajan, R., Kuerer, H., Valero, V., Assad, L., Poniecka, A., Hennessy, B., Green, M., Buzdar, A. U., Singletary, S. E., Hortobagyi, G. N., and Pusztai, L. (2007) Measurement of residual breast cancer burden to predict survival after neoadjuvant chemotherapy, J. Clin. Oncol., 25, 4414-4422, https://doi.org/10.1200/JCO.2007.10.6823.
  101. Cortazar, P., Zhang, L., Untch, M., Mehta, K., Costantino, J. P., Wolmark, N., Bonnefoi, H., Cameron, D., Gianni, L., Valagussa, P., Swain, S. M., Prowell, T., Loibl, S., Wickerham, D. L., Bogaerts, J., Baselga, J., Perou, C., Blumenthal, G., Blohmer, J., Mamounas, E. P., and von Minckwitz, G. (2014) Pathological complete response and long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis, Lancet, 384, 164-172, https://doi.org/10.1016/S0140-6736(13)62422-8.
  102. I-SPY2 Trial Consortium, Yee, D., DeMichele, A. M., Yau, C., Isaacs, C., Symmans, W. F., Albain, K. S., Chen, Y. Y., Krings, G., Wei, S., Harada, S., Datnow, B., Fadare, O., Klein, M., Pambuccian, S., Chen, B., Adamson, K., Sams, S., Mhawech-Fauceglia, P., Magliocco, A., and Berry, D. A. (2020) Association of event-free and distant re-currence-free survival with individual-level pathologic complete response in neoadjuvant treatment of stages 2 and 3 breast cancer: three-year follow-up analysis for the I-SPY2 adaptively randomized clinical trial, JAMA Oncol., 6, 1355-1362, https://doi.org/10.1001/jamaoncol.2020.2535.
  103. Ignatova, E. O., Frolova, M. A., Petrovsky, A. B., Stenina, M. B., Glazkova, E. V., Krokhina, O. V., Tjulandin, C. A.(2016) Evaluation of efficacy and toxicity of neoadjuvant chemotherapy with dose-dense doxorubicin, cispla-tin, and paclitaxel in patients with early triple-negative breast cancer, Malignant Tumours, 4, 49-57, https://doi.org/10.18027/2224-5057-2016-4-49-57.
  104. DeVita, V. T., Lawrence, T. S., and Rosenberg, S. A. (2023) Malignant tumors of the breast, in DeVita, Hellman, and Rosenberg’s Cancer: Principles & Practice of Oncology, 12th Edn, Wolters Kluwer, The Netherlands.
  105. McDonald, B. R., Contente-Cuomo, T., Sammut, S. J., Odenheimer-Bergman, A., Ernst, B., Perdigones, N., Chin, S. F., Farooq, M., Mejia, R., Cronin, P. A., Anderson, K. S., Kosiorek, H. E., Northfelt, D. W., McCullough, A. E., Patel, B. K., Weitzel, J. N., Slavin, T. P., Caldas, C., Pockaj, B. A., and Murtaza, M. (2019) Personalized circulating tumor DNA analysis to detect residual disease after neoadjuvant therapy in breast cancer, Sci. Translat. Med., 11, eaax7392, https://doi.org/10.1126/scitranslmed.aax7392.
  106. Cailleux, F., Agostinetto, E., Lambertini, M., Rothé, F., Wu, H. T., Balcioglu, M., Kalashnikova, E., Vincent, D., Viglietti, G., Gombos, A., Papagiannis, A., Veys, I., Awada, A., Sethi, H., Aleshin, A., Larsimont, D., Sotiriou, C., Venet, D., and Ignatiadis, M. (2022) Circulating tumor DNA after neoadjuvant chemotherapy in breast cancer is associated with disease relapse, JCO Precis. Oncol., 6, e2200148, https://doi.org/10.1200/PO.22.00148.
  107. Moss, J., Zick, A., Grinshpun, A., Carmon, E., Maoz, M., Ochana, B. L., Abraham, O., Arieli, O., Germansky, L., Meir, K., Glaser, B., Shemer, R., Uziely, B., and Dor, Y. (2020) Circulating breast-derived DNA allows universal detection and monitoring of localized breast cancer, Ann. Oncol., 31, 395-403, https://doi.org/10.1016/j.annonc. 2019.11.014.
  108. Magbanua, M. J. M., Brown Swigart, L., Ahmed, Z., Sayaman, R. W., Renner, D., Kalashnikova, E., Hirst, G. L., Yau, C., Wolf, D. M., Li, W., Delson, A. L., Asare, S., Liu, M. C., Albain, K., Chien, A. J., Forero-Torres, A., Isaacs, C., Nanda, R., Tripathy, D., Rodriguez, A., and van ‘t Veer, L. J. (2023) Clinical significance and biology of circulating tumor DNA in high-risk early-stage HER2-negative breast cancer receiving neoadjuvant chemotherapy, Cancer Cell, 41, 1091-1102.e4, https://doi.org/10.1016/j.ccell.2023.04.008.
  109. Magbanua, M. J. M., Ahmed, Z., Sayaman, R. W., Brown Swigart, L., Hirst, G. L., Yau, C., Wolf, D. M., Li, W., Delson, A. L., Perlmutter, J., Pohlmann, P., Symmans, W. F., Yee, D., Hylton, N. M., Esserman, L. J., DeMichele, A. M., Rugo, H. S., and van ‘t Veer, L. J. (2024) Cell-free DNA concentration as a biomarker of response and recurrence in HER2-negative breast cancer receiving neoadjuvant chemotherapy, Clin. Cancer Res., 30, 2444-2451, https://doi.org/10.1158/1078-0432.CCR-23-2928.
  110. Lin, P. H., Wang, M. Y., Lo, C., Tsai, L. W., Yen, T. C., Huang, T. Y., Huang, W. C., Yang, K., Chen, C. K., Fan, S. C., Kuo, S. H., and Huang, C. S. (2021) Circulating tumor DNA as a predictive marker of recurrence for patients with stage II-III breast cancer treated with neoadjuvant therapy, Front. Oncol., 11, 736769, https://doi.org/10.3389/fonc.2021.736769.
  111. Ciriaco, N., Zamora, E., Escrivá-de-Romaní, S., Miranda Gómez, I., Jiménez Flores, J., Saura, C., Sloane, H., Starus, A., Fredebohm, J., Georgieva, L., Speight, G., Jones, F., Ramón Y Cajal, S., Espinosa-Bravo, M., and Peg, V.(2022) Clearance of ctDNA in triple-negative and HER2-positive breast cancer patients during neoadjuvant treat-ment is correlated with pathologic complete response, Ther. Adv. Med. Oncol., 14, 17588359221139601, https://doi.org/10.1177/17588359221139601.
  112. Liu, B., Yi, Z., Guan, Y., Ouyang, Q., Li, C., Guan, X., Lv, D., Li, L., Zhai, J., Qian, H., Xu, B., Ma, F., and Zeng, Y.(2022) Molecular landscape of TP53 mutations in breast cancer and their utility for predicting the response to HER-targeted therapy in HER2 amplification-positive and HER2 mutation-positive amplification-negative pa-tients, Cancer Med., 11, 2767-2778, https://doi.org/10.1002/cam4.4652.
  113. Garcia-Murillas, I., Cutts, R. J., Walsh-Crestani, G., Phillips, E., Hrebien, S., Dunne, K., Sidhu, K., Daber, R., Hubert, B., Graybill, C., DeFord, P. M., Wooten, D. J., Zhao, J., Ellsworth, R. E., Johnston, S. R. D., Ring, A., Russell, S., Evans, A., Skene, A., Wheatley, D., and Turner, N. C. (2025) Longitudinal monitoring of circulating tumor DNA to detect relapse early and predict outcome in early breast cancer, Breast Cancer Res. Treat., 209, 493-502, https://doi.org/10.1007/s10549-024-07508-2.
  114. Nguyen, S. T., Nguyen Hoang, V. A., Nguyen Trieu, V., Pham, T. H., Dinh, T. C., Pham, D. H., Nguyen, N., Vinh, D. N., Do, T. T. T., Nguyen, D. S., Nguyen, H. N., Giang, H., and Tu, L. N. (2025) Personalized mutation tracking in circulating-tumor DNA predicts recurrence in patients with high-risk early breast cancer, NPJ Breast Cancer, 11, 58, https://doi.org/10.1038/s41523-025-00778-z.
  115. Lee, T. H., Kim, H., Kim, Y. J., Park, W. Y., Park, W., Cho, W. K., and Kim, N. (2024) Implication of pre- and post-radiotherapy ctDNA dynamics in patients with residual triple-negative breast cancer at surgery after neo-adjuvant chemotherapy: findings from a prospective observational study, Cancer Res. Treat., 56, 531-537, https://doi.org/10.4143/crt.2023.996.
  116. Wang, R., Wang, B., Zhang, H., Liao, X., Shi, B., Zhou, Y., Zhou, C., Yan, Y., Zhang, W., Wang, K., Ge, G., Ren, Y., Tang, X., Gan, B., He, J., and Niu, L. (2024) Early evaluation of circulating tumor DNA as marker of therapeutic efficacy and prognosis in breast cancer patients during primary systemic therapy, Breast, 76, 103738, https://doi.org/10.1016/j.breast.2024.103738.
  117. Zhang, D., Jahanfar, S., Rabinowitz, J. B., Dower, J., Song, F., Wu, C. H., Hu, X., Tracy, P., Basik, M., Medford, A., Lin, P. H., Huang, C. S., Bidard, F. C., Renault, S., Pai, L., Buss, M., Parsons, H. A., and Schlam, I. (2025) Role of circulating tumor DNA in early-stage triple-negative breast cancer: a systematic review and meta-analysis, Breast Cancer Res., 27, 38, https://doi.org/10.1186/s13058-025-01986-y.
  118. Li, S., Li, Y., Wei, W., Gong, C., Wang, T., Li, G., Yao, F., Ou, J. H., Xu, Y., Wu, W., Jin, L., Rao, N., Nie, Y., Yu, F., Jia, W., Li, X. R., Zhang, J., Yang, H. W., Yang, Y., Wu, M., and Liu, Q. (2025) Dynamic ctDNA tracking stratifies relapse risk for triple negative breast cancer patients receiving neoadjuvant chemotherapy, Nat. Commun., 16, 2786, https://doi.org/10.1038/s41467-025-57988-z.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».