METTL4 METHYLTRANSFERASE ACTIVITY IS ESSENTIAL FOR MAINTAINING OPTIMAL SPLICING EFFICIENCY IN HeLa S3 CELLS
- Authors: Bolikhova A.K1,2,3, Buyan A.I3,4, Khokhlova M.A1,3, Mariasina S.S2,3,5, Izzi A.R1,3, Rudenko A.Y2, Serebryakova M.V2, Mazur A.M6, Dontsova O.A1,2,3,7, Sergiev P.V1,2,3
-
Affiliations:
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University
- Lomonosov Moscow State University
- Institute of Protein Research, Russian Academy of Sciences
- Research and Educational Resource Center "Pharmacy", RUDN University
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences
- Shennyakin-Ovchinnikov Institute of Bioorganic Chemistry
- Issue: Vol 90, No 11 (2025)
- Pages: 1862-1878
- Section: Articles
- URL: https://medbiosci.ru/0320-9725/article/view/362458
- DOI: https://doi.org/10.7868/S3034529425110205
- ID: 362458
Cite item
Abstract
Keywords
About the authors
A. K Bolikhova
Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology; Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University; Lomonosov Moscow State University
Email: anastasia_b7@mail.ru
121205 Skolkovo, Russia; 119991 Moscow, Russia
A. I Buyan
Lomonosov Moscow State University; Institute of Protein Research, Russian Academy of Sciences119991 Moscow, Russia; 142290 Pushchino, Moscow Region, Russia
M. A Khokhlova
Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology; Lomonosov Moscow State University121205 Skolkovo, Russia; 119991 Moscow, Russia
S. S Mariasina
Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University; Lomonosov Moscow State University; Research and Educational Resource Center "Pharmacy", RUDN University119991 Moscow, Russia; 117198 Moscow, Russia
A. R Izzi
Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology; Lomonosov Moscow State University121205 Skolkovo, Russia; 119991 Moscow, Russia
A. Y Rudenko
Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University119991 Moscow, Russia
M. V Serebryakova
Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University119991 Moscow, Russia
A. M Mazur
Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences119071 Moscow, Russia
O. A Dontsova
Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology; Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University; Lomonosov Moscow State University; Shennyakin-Ovchinnikov Institute of Bioorganic Chemistry121205 Skolkovo, Russia; 119991 Moscow, Russia; 117997 Moscow, Russia
P. V Sergiev
Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology; Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University; Lomonosov Moscow State University121205 Skolkovo, Russia; 119991 Moscow, Russia
References
- Jiang, X., Liu, B., Nie, Z., Duan, L., Xiong, Q., Jin, Z., Yang, C., and Chen, Y. (2021) The role of m6A modification in the biological functions and diseases, Signal Transduct. Target. Ther., 6, 74, https://doi.org/10.1038/s41392-020-00450-x.
- Boo, S. H., and Kim, Y. K. (2020) The emerging role of RNA modifications in the regulation of mRNA stability, Exp. Mol. Med., 52, 400-408, https://doi.org/10.1038/s12276-020-0407-z.
- Suzuki, T. (2021) The expanding world of tRNA modifications and their disease relevance, Nat. Rev. Mol. Cell Biol., 22, 375-392, doi.org/10.1038/s41580-021-00342-0.
- Sergiev, P. V., Aleksashin, N. A., Chugunova, A. A., Polikanov, Y. S., and Dontsova, O. A. (2018) Structural and evolutionary insights into ribosomal RNA methylation, Nat. Chem. Biol., 14, 226-235, https://doi.org/10.1038/nchembio.2569.
- Kazimierczyk, M., and Wrzesinski, J. (2021) Long non-coding RNA epigenetics, Int. J. Mol. Sci., 22, 6166, https://doi.org/10.3390/IJMS22116166.
- Morais, P., Adachi, H., and Yu, Y. T. (2021) Spliceosomal snRNA epitranscriptomics, Front. Genet., 12, 652129, https://doi.org/10.3389/FGENE.2021.652129/XML.
- Louloupi, A., Ntini, E., Conrad, T., and Ørom, U. A. V. (2018) Transient N-6-methyladenosine transcriptome sequencing reveals a regulatory role of m6A in splicing efficiency, Cell. Rep., 23, 3429-3437, https://doi.org/10.1016/j.celrep.2018.05.077.
- Wang, X., Zhao, B. S., Roundtree, I. A., Lu, Z., Han, D., Ma, H., Weng, X., Chen, K., Shi, H., and He, C. (2015) N6-methyladenosine modulates messenger RNA translation efficiency, Cell, 161, 1388-1399, https://doi.org/10.1016/j.cell.2015.05.014.
- Wang, X., Lu, Z., Gomez, A., Hon, G. C., Yue, Y., Han, D., Fu, Y., Parisien, M., Dai, Q., Jia, G., Ren, B., Pan, T., and He, C. (2013) N6-methyladenosine-dependent regulation of messenger RNA stability, Nature, 505, 117-120, https://doi.org/10.1038/nature12730.
- Peng, H., Chen, B., Wei, W., Guo, S., Han, H., Yang, C., Ma, J., Wang, L., Peng, S., Kuang, M., and Lin, S. (2022) N6-methyladenosine (m6A) in 18S rRNA promotes fatty acid metabolism and oncogenic transformation, Nat. Metab., 4, 1041-1054, https://doi.org/10.1038/s42255-022-00622-9.
- Ma, H., Wang, X., Cai, J., Dai, Q., Natchiar, S. K., Lv, R., Chen, K., Lu, Z., Chen, H., Shi, Y. G., Lan, F., Fan, J., Klaholz, B. P., Pan, T., Shi, Y., and He, C. (2019) N 6-Methyladenosine methyltransferase ZCCHC4 mediates ribosomal RNA methylation, Nat. Chem. Biol., 15, 88-94, https://doi.org/10.1038/S41589-018-0184-3.
- Warda, A. S., Kretschmer, J., Hackert, P., Lenz, C., Urlaub, H., Höbartner, C., Sloan, K. E., and Bohnsack, M. T. (2017) Human METTL16 is a N6‐methyladenosine (m6A) methyltransferase that targets pre-mRNAs and various non-coding RNAs, EMBO Rep., 18, 2004-2014, https://doi.org/10.15252/EMBR.201744940.
- Ishigami, Y., Ohira, T., Isokawa, Y., Suzuki, Y., and Suzuki, T. (2021) A single m6A modification in U6 snRNA diversifies exon sequence at the 5′ splice site, Nat. Commun., 12, 3244, https://doi.org/10.1038/s41467-021-23457-6.
- Yang, Y., Hsu, P. J., Chen, Y. S., and Yang, Y. G. (2018) Dynamic transcriptomic m6A decoration: Writers, erasers, readers and functions in RNA metabolism, Cell. Res., 28, 616-624, https://doi.org/10.1038/S41422-018-0040-8.
- Liu, J., Yue, Y., Han, D., Wang, X., Fu, Y., Zhang, L., Jia, G., Yu, M., Lu, Z., Deng, X., Dai, Q., Chen, W., and He, C. (2014) A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation, Nat. Chem. Biol., 10, 93-95, https://doi.org/10.1038/nchembio.1432.
- Lai, J. C. Y., Hsu, K. W., and Wu, K. J. (2024) Interrogation of the interplay between DNA N6-methyladenosine (6mA) and hypoxia-induced chromatin accessibility by a randomized empirical model (EnrichShuf), Nucleic Acids Res., 52, 13605-13624, https://doi.org/10.1093/NAR/GKAE1152.
- Hsu, K. W., Lai, J. C., Chang, J. S., Peng, P. H., Huang, C. H., Lee, D. Y., Tsai, Y. C., Chung, C. J., Chang, H., Chang, C. H., Chen, J. L., Pang, S. T., Hao, Z., Cui, X. L., He, C., and Wu, K. J. (2022) METTL4-mediated nuclear N6-deoxyadenosine methylation promotes metastasis through activating multiple metastasis-inducing targets, Genome. Biol., 23, 249, https://doi.org/10.1186/s13059-022-02819-3.
- Zheng, L., Chen, X., He, X., Wei, H., Li, X., Tan, Y., Min, J., Chen, M., Zhang, Y., Dong, M., Yin, Q., Xue, M., Zhang, L., Huo, D., Jiang, H., Li, T., Li, F., Wang, X., Li, X., and Chen, H. (2025) METTL4-Mediated mitochondrial DNA N6-methyldeoxyadenosine promoting macrophage inflammation and atherosclerosis, Circulation, 151, 946-965, https://doi.org/10.1161/CIRCULATIONAHA.124.069574.
- Sang, A., Zhang, J., Zhang, M., Xu, D., Xuan, R., Wang, S., Song, X., and Li, X. (2024) METTL4 mediated-N6-methyladenosine promotes acute lung injury by activating ferroptosis in alveolar epithelial cells, Free Radic. Biol. Med., 213, 90-101, https://doi.org/10.1016/j.freeradbiomed.2024.01.013.
- Van den Homberg, D. A. L., van der Kwast, R. V. C. T., Quax, P. H. A., and Nossent, A. Y. (2022) N-6-methyladenosine in vasoactive microRNAs during hypoxia; a novel role for METTL4, Int. J. Mol. Sci., 23, 1057, https://doi.org/10.3390/IJMS23031057.
- Chen, H., Gu, L., Orellana, E. A., Wang, Y., Guo, J., Liu, Q., Wang, L., Shen, Z., Wu, H., Gregory, R. I., Xing, Y., and Shi, Y. (2020) METTL4 is an snRNA m6Am methyltransferase that regulates RNA splicing, Cell. Res., 30, 544-547, https://doi.org/10.1038/S41422-019-0270-4.
- Luo, Q., Mo, J., Chen, H., Hu, Z., Wang, B., Wu, J., Liang, Z., Xie, W., Du, K., Peng, M., Li, Y., Li, T., Zhang, Y., Shi, X., Shen, W. H., Shi, Y., Dong, A., Wang, H., and Ma, J. (2022) Structural insights into molecular mechanism for N6-adenosine methylation by MT-A70 family methyltransferase METTL4, Nat. Commun., 13, 5636, https://doi.org/10.1038/s41467-022-33277-x.
- Gu, L., Wang, L., Chen, H., Hong, J., Shen, Z., Dhall, A., Lao, T., Liu, C., Wang, Z., Xu, Y., Tang, H. W., Chakraborty, D., Chen, J., Liu, Z., Rogulja, D., Perrimon, N., Wu, H., and Shi, Y. (2020) CG14906 (mettl4) mediates m6A methylation of U2 snRNA in Drosophila, Cell Discov., 6, 44, https://doi.org/10.1038/s41421-020-0178-7.
- Sendinc, E., and Shi, Y. (2023) RNA m6A methylation across the transcriptome, Mol. Cell., 83, 428-441, https://doi.org/10.1016/j.molcel.2023.01.006.
- Van der Feltz, C., and Hoskins, A. A. (2019) Structural and functional modularity of the U2 snRNP in pre-mRNA splicing, Crit. Rev. Biochem. Mol. Biol., 54, 443-465, https://doi.org/10.1080/10409238.2019.1691497.
- Karunatilaka, K. S., and Rueda, D. (2014) Post-transcriptional modifications modulate conformational dynamics in human U2-U6 snRNA complex, RNA, 20, 16-23, https://doi.org/10.1261/RNA.041806.113.
- Goh, Y. T., Koh, C. W. Q., Sim, D. Y., Roca, X., and Goh, W. S. S. (2020) METTL4 catalyzes m6Am methylation in U2 snRNA to regulate pre-mRNA splicing, Nucleic Acids Res., 48, 9250-9261, https://doi.org/10.1093/nar/gkaa684.
- Ran, F. A., Hsu, P. D., Wright, J., Agarwala, V., Scott, D. A., and Zhang, F. (2013) Genome engineering using the CRISPR-Cas9 system, Nat. Protoc., 8, 2281-2308, https://doi.org/10.1038/nprot.2013.143.
- Laptev, I., Shvetsova, E., Levitskii, S., Serebryakova, M., Rubtsova, M., Zgoda, V., Bogdanov, A., Kamenski, P., Sergiev, P., and Dontsova, O. (2020) METTL15 interacts with the assembly intermediate of murine mitochondrial small ribosomal subunit to form m4C840 12S rRNA residue, Nucleic Acids Res., 48, 8022-8034, https://doi.org/10.1093/NAR/GKAA522.
- Bolikhova, A. K., Buyan, A. I., Mariasina, S. S., Rudenko, A. Y., Chekh, D. S., Mazur, A. M., Prokhortchouk, E. B., Dontsova, O. A., and Sergiev, P. V. (2024) Study of the RNA splicing kinetics via in vivo 5-EU labeling, RNA, 30, 1356-1373, https://doi.org/10.1261/rna.079937.123.
- Krueger, F., James, F., Ewels, P., Afyounian, E., Weinstein, M., Schuster-Boeckler, B., Hulselmans, G., sclamons (2023) FelixKrueger/TrimGalore: version 0.6.8, https://doi.org/10.5281/ZENODO.7579519.
- Dobin, A., Davis, C. A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chaisson, M., and Gingeras, T. R. (2013) STAR: Ultrafast universal RNA-seq aligner, Bioinformatics, 29, 15-21, https://doi.org/10.1093/BIOINFORMATICS/BTS635.
- Loveland, J. E., Mudge, J. M., Sisu, C., Wright, J. C., Armstrong, J., Barnes, I., Berry, A., Bignell, A., Boix, C., Carbonell Sala, S., Cunningham, F., Di Domenico, T., Donaldson, S., Fiddes, I. T., García Girón, C., Gonzalez, J. M., Grego, T., Hardy, M., Hourlier, T., Howe, K., Hunt, T., et al. (2021) GENCODE, Nucleic Acids Res., 49, D916-D923, https://doi.org/10.1093/NAR/GKAA1087.
- Liao, Y., Smyth, G. K., and Shi, W. (2019) The R package Rsubread is easier, faster, cheaper and better for alignment and quantification of RNA sequencing reads, Nucleic Acids Res., 47, e47, https://doi.org/10.1093/nar/gkz114.
- Danecek, P., Bonfield, J. K., Liddle, J., Marshall, J., Ohan, V., Pollard, M. O., Whitwham, A., Keane, T., McCarthy, S. A., Davies, R. M., and Li, H. (2021) Twelve years of SAMtools and BCFtools, Gigascience, 10, giab008, https://doi.org/10.1093/gigascience/giab008.
- Lorenzi, L., Chiu, H. S., Avila Cobos, F., Gross, S., Volders, P. J., Cannoodt, R., Nuytens, J., Vanderheyden, K., Anckaert, J., Lefever, S., Tay, A. P., de Bony, E. J., Trypsteen, W., Gysens, F., Vromman, M., Goovaerts, T., Hansen, T. B., Kuersten, S., Nijs, N., Taghon, T., Vermaelen, K., Bracke, K., Saeys, Y., Meyer, T., Deshpandeet, N., et al. (2021) The RNA Atlas expands the catalog of human non-coding RNAs, Nat. Biotechnol., 39, 1453-1465, https://doi.org/10.1038/S41587-021-00936-1.
- Karolchik, D., Hinrichs, A. S., Furey, T. S., Roskin, K. M., Sugnet, C. W., Haussler, D., and Kent, W. J. (2004) The UCSC table browser data retrieval tool, Nucleic Acids Res., 32, D493-D496, https://doi.org/10.1093/nar/gkh103.
- Quinlan, A. R., and Hall, I. M. (2010) BEDTools: A flexible suite of utilities for comparing genomic features, Bioinformatics, 26, 841-842, https://doi.org/10.1093/bioinformatics/btq033.
- Mertes, C., Scheller, I. F., Yépez, V. A., Çelik, M. H., Liang, Y., Kremer, L. S., Gusic, M., Prokisch, H., and Gagneur, J. (2022) Author Correction: Detection of aberrant splicing events in RNA-seq data using FRASER, Nat. Commun., 13, 3474, https://doi.org/10.1038/S41467-022-31242-2.
- Subramanian, A., Kuehn, H., Gould, J., Tamayo, P., and Mesirov, J. P. (2007) GSEA-P: A desktop application for gene set enrichment analysis, Bioinformatics, 23, 3251-3253, https://doi.org/10.1093/bioinformatics/btm369.
- Wang, Y., Xie, Z., Kutschera, E., Adams, J. I., Kadash-Edmondson, K. E., and Xing, Y. (2024) rMATS-turbo: an efficient and flexible computational tool for alternative splicing analysis of large-scale RNA-seq data, Nat. Protoc., 19, 1083-1104, https://doi.org/10.1038/S41596-023-00944-2.
- Lirussi, L., Demir, Ö., You, P., Sarno, A., Amaro, R. E., and Nilsen, H. (2021) RNA metabolism guided by RNA modifications: the role of SMUG1 in rRNA quality control, Biomolecules, 11, 1-22, 76, https://doi.org/10.3390/biom11010076.
- Qiu, L., Jing, Q., Li, Y., and Han, J. (2023) RNA modification: mechanisms and therapeutic targets, Mol. Biomed., 4, 25, https://doi.org/10.1186/S43556-023-00139-X.
- Darzacq, X., Jády, B. E., Verheggen, C., Kiss, A. M., Bertrand, E., and Kiss, T. (2002) Cajal body-specific small nuclear RNAs: a novel class of 2′-O-methylation and pseudouridylation guide RNAs, EMBO J., 21, 2746-2756, https://doi.org/10.1093/emboj/21.11.2746.
- Nesic, D., Tanackovic, G., and Krämer, A. (2004) A role for Cajal bodies in the final steps of U2 snRNP biogenesis, J. Cell Sci., 117, 4423-4433, https://doi.org/10.1242/jcs.01308.
- Staněk, D. (2017) Cajal bodies and snRNPs – friends with benefits, RNA Biol., 14, 671-679, https://doi.org/10.1080/15476286.2016.1231359.
- Novotný, I., Malinová, A., Stejskalová, E., Matějů, D., Klimešová, K., Roithová, A., Švéda, M., Knejzlík, Z., and Staněk, D. (2014) SART3-dependent accumulation of incomplete spliceosomal snRNPs in Cajal bodies, Cell Rep., 10, 429-440, https://doi.org/10.1016/j.celrep.2014.12.030.
- Staněk, D. (2023) Coilin and Cajal bodies, Nucleus, 14, 2256036, https://doi.org/10.1080/19491034.2023.2256036.
- Casamassimi, A., and Ciccodicola, A. (2019) Transcriptional regulation: molecules, involved mechanisms, and misregulation, Int. J. Mol. Sci., 20, 1281, https://doi.org/10.3390/ijms20061281.
- Duchemin, A., O’Grady, T., Hanache, S., Mereau, A., Thiry, M., Wacheul, L., Michaux, C., Perpète, E., Hervouet, E., Peixoto, P., Ernst, F. G. M., Audic, Y., Dequiedt, F., Lafontaine, D. L. J., and Mottet, D. (2021) DHX15-independent roles for TFIP11 in U6 snRNA modification, U4/U6.U5 tri-snRNP assembly and pre-mRNA splicing fidelity, Nat. Commun., 12, 6648, https://doi.org/10.1038/s41467-021-26932-2.
- Vazquez-Arango, P., and O’Reilly, D. (2018) Variant snRNPs: new players within the spliceosome system, RNA Biol., 15, 17-25, https://doi.org/10.1080/15476286.2017.1373238.
- Devany, E., Park, J. Y., Murphy, M. R., Zakusilo, G., Baquero, J., Zhang, X., Hoque, M., Tian, B., and Kleiman, F. E. (2016) Intronic cleavage and polyadenylation regulates gene expression during DNA damage response through U1 snRNA, Cell Discov., 2, 16013, https://doi.org/10.1080/15476286.2017.1373238.
- Köhler, A., and Hurt, E. (2007) Exporting RNA from the nucleus to the cytoplasm, Nat. Rev. Mol. Cell Biol., 8, 761-773, https://doi.org/10.1038/nrm2255.
- Pánek, J., Roithová, A., Radivojević, N., Sýkora, M., Prusty, A. B., Huston, N., Wan, H., Pyle, A. M., Fischer, U., and Staněk, D. (2023) The SMN complex drives structural changes in human snRNAs to enable snRNP assembly, Nat. Commun., 14, 6580, https://doi.org/10.1038/s41467-023-42324-0.
- Zieve, G. W. (1987) Cytoplasmic maturation of the snRNAs, J. Cell Physiol., 131, 247-254, https://doi.org/10.1002/jcp.1041310215.
- Nizami, Z., Deryusheva, S., and Gall, J. G. (2010) The Cajal body and histone locus body, Cold Spring Harb. Perspect. Biol., 2, a000653, https://doi.org/10.1101/cshperspect.a000653.
- Geisler, M. S., Kemp, J. P., and Duronio, R. J. (2023) Histone locus bodies: a paradigm for how nuclear biomolecular condensates control cell cycle regulated gene expression, Nucleus, 14, 2293604, https://doi.org/10.1080/19491034.2023.2293604.
- Mauer, J., Sindelar, M., Despic, V., Guez, T., Hawley, B. R., Vasseur, J. J., Rentmeister, A., Gross, S. S., Pellizzoni, L., Debart, F., Goodarzi, H., and Jaffrey, S. R. (2019) FTO controls reversible m6Am RNA methylation during snRNA biogenesis, Nat. Chem. Biol., 15, 340-347, https://doi.org/10.1038/S41589-019-0231-8.
- Karijolich, J., Kantartzis, A., and Yu, Y. T. (2010) RNA modifications: a mechanism that modulates gene expression, Methods Mol. Biol., 629, 1-19, https://doi.org/10.1007/978-1-60761-657-3_1.
- Verheggen, C., Lafontaine, D. L., Samarsky, D., Mouaikel, J., Blanchard, J. M., Bordonné, R., and Bertrand, E. (2002) Mammalian and yeast U3 snoRNPs are matured in specific and related nuclear compartments, EMBO J., 21, 2736-2745, https://doi.org/10.1093/emboj/21.11.2736.
- Dragon, F., Gallagher, J. E., Compagnone-Post, P. A., Mitchell, B. M., Porwancher, K. A., Wehner, K. A., Wormsley, S., Settlage, R. E., Shabanowitz, J., Osheim, Y., Beyer, A. L., Hunt, D. F., and Baserga, S. J. (2002) A large nucleolar U3 ribonucleoprotein required for 18S ribosomal RNA biogenesis, Nature, 417, 967-970, https://doi.org/10.1038/nature00769.
- Kass, S., Tyc, K., Steitz, J. A., and Sollner-Webb, B. (1990) The U3 small nucleolar ribonucleoprotein functions in the first step of preribosomal RNA processing, Cell, 60, 897-908, https://doi.org/10.1016/0092-8674(90)90338-F.
- Lackmann, F., Belikov, S., Burlacu, E., Granneman, S., and Wieslander, L. (2018) Maturation of the 90S preribosome requires Mrd1 dependent U3 snoRNA and 35S pre-rRNA structural rearrangements, Nucleic Acids Res., 46, 3692-3706, https://doi.org/10.1093/NAR/GKY036.
- Bowling, E. A., Wang, J. H., Gong, F., Wu, W., Neill, N. J., Kim, I. S., Tyagi, S., Orellana, M., Kurley, S. J., Dominguez-Vidaña, R., Chung, H. C., Hsu, T. Y., Dubrulle, J., Saltzman, A. B., Li, H., Meena, J. K., Canlas, G. M., Chamakuri, S., Singh, S., Simon, L. M., Olson, C., Dobrolecki, L., Lewis, M., Zhang, B, and Golding, I., et al. (2021) Spliceosome-targeted therapies trigger an antiviral immune response in triple-negative breast cancer, Cell, 184, 384-403, https://doi.org/10.1016/j.cell.2020.12.031.
Supplementary files


