Determination of stiffness and damping characteristics of the adaptive suspension system to develop the optimal control of the simulation bench

Cover Page

Cite item

Full Text

Abstract

BACKGROUND: Optimization of the suspension system, its operating parameters, as well as active adjustment depending on the ground surface can significantly affect the fatigue resistance, improve comfort during operation ensuring smoothness of ride, reduce the pressure on ground, increase the overall energy efficiency of the mobile energy unit. Therefore, in this approach, there are theoretical calculations to find the optimal range for control of the simulation bench to study the parameters of the active suspension system.

AIM: Development of optimal operating conditions of the control system of the simulation bench, minimization of vibrations and oscillations, prediction of the system behavior in different conditions and modes of operation.

METHODS: The development of optimal control is based on the analysis of scientific works, including publications, scientific papers and other sources of information on the approaches to the development of optimal control of the performing device in the active suspension system for the most effective damping of vibrations arising from road unevenness. The method of theoretical calculation of three-factor experiment was used, the main dependencies were obtained.

RESULTS: The obtained equations have a high level of significance. Graphical representation makes it possible to make a qualitative assessment of the accuracy of the obtained equations. The equations make it possible to control the parameters of the adaptive suspension system with several criteria. Each criterion included in the equation influences on the function itself. In order to develop the optimal control, the obtained equations are applied in the software development.

CONCLUSION: The practical significance lies in the developed equations for the software concerning the optimal control of the simulation bench, the relationship between independent variables such as velocity, microprofile height and suspension stiffness has been established.

About the authors

Zakhid A. Godzhaev

Federal Scientific Agroengineering Center VIM

Email: fic51@mail.ru
ORCID iD: 0000-0002-1665-3730
SPIN-code: 1892-8405

Corresponding Member of the Russian Academy of Sciences, Professor, Dr. Sci. (Engineering), Head of the Mobile Energy Units Department

Russian Federation, Moscow

Sergey E. Senkevich

Federal Scientific Agroengineering Center VIM

Email: sergej_senkevich@mail.ru
ORCID iD: 0000-0001-6354-7220
SPIN-code: 7766-6626

Associate Professor, Cand. Sci. (Engineering), Head of the Automated Drive of Agricultural Machinery Laboratory; Senior Researcher

Russian Federation, Moscow

Ivan S. Malakhov

Federal Scientific Agroengineering Center VIM

Author for correspondence.
Email: malahovivan2008@mail.ru
ORCID iD: 0000-0001-8162-7718
SPIN-code: 7067-6972

Junior Researcher of the Modeling and Optimization of MPU Sector

Russian Federation, Moscow

Ekaterina N. Ilchenko

Federal Scientific Agroengineering Center VIM

Email: kat-sama@mail.ru
ORCID iD: 0009-0005-3901-5706
SPIN-code: 5672-1313

Engineer of the Automated Drive of Agricultural Machinery Laboratory

Russian Federation, Moscow

Sergey Y. Uyutov

Federal Scientific Agroengineering Center VIM

Email: s_uyutov@mail.ru
ORCID iD: 0000-0001-9394-5916
SPIN-code: 7350-1489

Junior Researcher of the Automated Drive of Agricultural Machinery Laboratory

Russian Federation, Moscow

References

  1. Fomin AB, Zheglov LF. Matematicheskaya model dvizheniya polnoprivodnoy kolesnoy ma-shiny po doroge s tverdoy nerovnoy poverkhnostyu. Nauka i obrazovanie. MGTU im. N.E. Baumana. 2013;11. (In Russ). doi: 10.7463/1113.0645575
  2. Polungyan AA, Fominykh AB. Matematicheskaya model dinamiki transmissii kolesnoy mashiny pri dvizhenii po tverdoy nerovnoy doroge. Vestnik MGTU im. N.E. Baumana. Ser. Mashinostroenie. 2003;4:15–25. (In Russ).
  3. Zhileykin MM. Matematicheskaya model pryamolineynogo dvizheniya kolesnoy mashiny s ba-lansirnoy podveskoy mostov po nerovnostyam puti. Transportnoe i energeticheskoe mashinostroenie. 2016;1:43–49. (In Russ). doi: 10.18698/0536-1044-2016-1-43-49
  4. Pobedin AV, Dolotov AA, Shekhovtsov VV. Decrease of the Vibration Load Level on the Tractor Operator Working Place by Means of Using of Vibrations Dynamic Dampers in the Cabin Suspension. Procedia Engineering. 2016;150:1252–1257. doi: 10.1016/j.proeng.2016.07.136
  5. Mohammadikia R, Aliasghary M. Design of an interval type-2 fractional order fuzzy controller for a tractor active suspension system. Computers and Electronics in Agriculture. 2019;167:105049. doi: 10.1016/j.compag.2019.105049
  6. Ramon H, De Baerdemaeker J. A modelling procedure for linearized motions of tree structured multibodies-2: Design of an active spray boom suspension on a spraying-machine. Computers & Structures. 1996;59(2):361–375. doi: 10.1016/0045-7949(95)00247-2
  7. Shen-Lung Tung, Yau-Tarng Juang, Wei-Hsun Lee, et al. Optimization of the exponential stabilization problem in active suspension system using PSO. Expert Systems with Applications. 2011;38(11):14044–14051. doi: 10.1016/j.eswa.2011.04.212
  8. Kazakova EM. Kratkiy obzor metodov optimizatsii na osnove roya chastits. Vestnik KRAUNTs. Fiz.-mat. nauki. 2022;39(2):150–174. (In Russ). doi: 10.26117/2079-6641-2022-39-2-150-174
  9. Cleghorn CW, Engelbrecht AP. Particle swarm convergence: an empirical investigation. In: 2014 IEEE Congress on Evolut. Comput. (CEC). IEEE, 2014:2524–2530. doi: 10.1007/978-3-319-09952-112
  10. Zhileykin MM, Fedotov IV. Algoritm kompleksnogo optimalnogo upravleniya dempfirovaniem v podveske kolesnykh mashin. Izvestiya vysshikh uchebnykh zavedeniy. Mashinostroenie. 2017;8:46–53. (In Russ). doi: 10.18698/0536-1044-2017-8-46-53
  11. Lovchakov VI, Sukhinin BV, Surkov VV. Optimalnoe upravlenie elektrotekhnicheskimi obektami. Tula: TulGU; 2005. (In Russ).
  12. Ivaykin V. Ispolzovanie skolzyashchikh rezhimov v regulirovanii. Sovremennye tekhnolo-gii avtomatizatsii. 2006;1:90–94. (In Russ).
  13. Sukhorukov AV. Upravlenie dempfiruyushchimi elementami v sisteme podressorivaniya bystrokhodnoy gusenichnoy mashiny. [dissertation] Moscow; 2003. (In Russ).
  14. Zhileykin MM, Kalinin PS, Fedotov IV. Sintez aktivnoy dinamicheskoy nepreryvnoy sistemy upravleniya podveskoy mnogoosnogo kolesnogo shassi. Trudy NAMI. 2012;249:60–86. (In Russ). EDN: OZMDKF
  15. Alekseev AA. Vybor zakona upravleniya adaptivnoy sistemoy podressorivaniya avtomobilya. Izvestiya vysshikh uchebnykh zavedeniy. Mashinostroenie. 2007;4:21–25. (In Russ). EDN: TZVPNV
  16. Oleynikov AS. Razrabotka kvazioptimalnogo diskretnogo upravleniya zhestkostyu vibro-zashchitnoy sistemy: [dissertation] Volgograd; 2014. (In Russ). EDN: ZPLKEJ
  17. Godzhaev Z, Senkevich S, Malakhov I, Uyutov S. Development of a mathematical model of the oscillatory system of agricultural mobile power equipment with attachments for the creation of their adaptive springing systems. E3S Web of Conferences. 2023;413:02042. (In Russ). EDN: YZMVZT doi: 10.1051/e3sconf/202341302042
  18. Godzhaev Z, Senkevich S, Uyutov S, et al. Substantiation of the range of changes in the elastic-damping and inertial characteristics of the oscillatory system of agricultural MES with mounted technological equipment. BIO Web of Conferences. 2024;84:05045. (In Russ). EDN: HNLMOB doi: 10.1051/bioconf/20248405045
  19. Godzhaev ZA, Senkevich SE, Malakhov IS, et al. Issledovanie dinamicheskikh kharakteri-stik selskokhozyaystvennykh mobilnykh energosredstv s adaptivnoy khodovoy sistemoy. In.: XVI Vserossiyskaya multi konferentsiya po problemam upravleniya (MKPU-2023) : materialy multi konferentsii. V 4 t., Volgograd, 11–15 sentyabrya 2023 goda. Volgograd: VolgGTU; 2023;4:48–50. (In Russ). EDN: KQRVIT
  20. Barskiy IB, Anilovich VYa, Kutkov GM. Dinamika traktora. Moscow: Mashinostroenie; 1973. (In Russ).
  21. Khachaturov AA. Dinamika sistemy doroga — shina — avtomobil — voditel. Moscow: Mashinostroenie; 1976. (In Russ).
  22. Spiridonov AA. Planirovanie eksperimenta pri issledovanii tekhnologicheskikh protsessov. Moscow: Mashinostroenie; 1981. (In Russ).

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Graphs of accuracy (adequacy) of equations: a — for the Y1 curve; b — for the Y2 curve; с — for the Y3 curve.

Download (247KB)
3. Fig. 2. Graphs of response surface for the Y1 (а) and level curves (b) at х1= -1..1, х2= -1..1, х3= 0.

Download (217KB)
4. Fig. 3. Graphs of response surface for the Y1 (а) and level curves (b) at х1= 0, х2= -1..1, х3= -1..1.

Download (224KB)
5. Fig. 4. Graphs of response surface for the Y1 (а) and level curves (b) at х1= -1..1, х2= 0, х3= -1..1.

Download (242KB)
6. Fig. 5. Graphs of response surface for the Y2 (а) and level curves (b) at х1= -1..1, х2= -1..1, х3= 0.

Download (238KB)
7. Fig. 6. Graphs of response surface for the Y2 (а) and level curves (b) at х1=0, х2= -1..1, х3= -1..1.

Download (254KB)
8. Fig. 7. Graphs of response surface for the Y2 (а) and level curves (b) at х1= -1..1, х2= 0, х3= -1..1.

Download (258KB)
9. Fig. 8. Graphs of response surface for the Y3 (а) and level curves (b) at х1= -1..1, х2= -1..1, х3= 0.

Download (247KB)
10. Fig. 9. Graphs of response surface for the Y3 (а) and level curves (b) at х1= 0, х2= -1..1, х3= -1..1.

Download (260KB)
11. Fig. 10. Graphs of response surface for the Y3 (а) and level curves (b) at х1= -1..1, х2= 0, х3= -1..1.

Download (284KB)

Copyright (c) 2024 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).