EVOLUTION OF LOW-FREQUENCY BARRIER DISCHARGE PLASMA RADIATION IN LOW-PRESSURE NEON. ION RADIATION SPECTRUM

Cover Page

Cite item

Full Text

Abstract

Emission of low-frequency barrier discharge plasma in neon at a pressure of 1.4–1.7 Torr formed by transitions between excited states of the Ne+ ion is studied in the wavelength range of 290–450 nm using kinetic spectroscopy methods. The difference in the relative intensities of ion lines at different stages of the plasma evolution is discussed: from direct excitation with ionization from the ground state of the atom by electron impact in the active stage (discharge), followed by a transition to the recombination afterglow as the electron temperature relaxes. The latter is due to the collisional-radiative recombination of doubly charged Ne2+ ions with electrons, creating at a density of the latter of [e]≈1011 cm−3 the population flux of some Ne+* levels comparable to excitation by electrons at the stage of the plasma creation. A significant number of ion lines corresponding to transitions from states with the principal quantum number n = 3 contain an intermediate stage, the explanation of which is based on the experimentally confirmed hypothesis that the long-lived neon atoms in metastable states participate in their excitation. In contrast, the spectral lines of transitions from excited states of the Ne+* ion of 2s22p4(3P2)4f configurations do not have this stage.

About the authors

V. A. Ivanov

St. Petersburg State University

Email: v.a.ivanov@spbu.ru
St. Petersburg, Russia

References

  1. Иванов В.А., Скобло Ю.Э. // ЖЭТФ. 2024. Т. 166. С. 434. https://doi.org/10.31857/S0044DBD45102409013X
  2. Иванов В.А. // ЖЭТФ. 2025. Т. 167. С. 893. https://doi.org/10.31857/S0044451025060161
  3. Ivanov V.A. // Plasma Sources Sci. Technol. 2020. V. 2. P. 045022. https://doi.org/10.1088/1361-6595/ab7f4c
  4. Иванов В.А. // Оптика и спектроскопия. 2023. Т. 131. С. 1173. https://doi.org/0.21883/OS.2023.09.56602.5307-23
  5. Иванов В.А. // Оптика и спектроскопия. 2022. Т. 130. С. 1004. https://doi.org/10.21883/OS.2022.07.52719.3077-21
  6. Иванов В.А. // Оптика и спектроскопия. 2023. Т. 131. С. 1537. https://doi.org/10.61011/OS.2023.11.57022.5370-23
  7. Frisch S. // Zeit. Phys. 1930. V. 64. P. 499.
  8. Persson W. // Physica Scripta. 1971. V. 3. P. 133.
  9. Kramida A.E., Nave G. // European J. Phys. 2006. V. D37. P. 1.
  10. NIST Atomic Spectra Database Lines Form [Electronic source]. https://physics.nist.gov/PhysRefData/ASD/linesform.html
  11. Hagstrum H.D. // Phys. Rev. 1956. V. 104. P. 309.
  12. Latypov Z.Z., Kupriyanov S.E., and Tunitskii N.N. // Sov. Phys. JETP. 1964. V. 19. P. 570.
  13. Church D.A. // Physica Scripta. 1995. V. 59. P. 216.
  14. Steinbrügge R., Kühn S., Nicastro F. // Astrophys. J. 2022. V. 941. P. 188. https://doi.org/10.3847/1538-4357/ac9c00
  15. Walker K.G., St. John R.M. // Phys. Rev. A. 1972. V. 6. P. 240.
  16. Иванов В.А. // Оптика и спектроскопия. 2021. Т. 129. С. 992. https://doi.org/10.21883/OS.2021.08.51193.1987-21
  17. Stevefelt J., Boulmer J., Delpech J.-F. // Phys. Rev. A. 1975. V. 12. P. 1246.
  18. Johnsen R., Biondi M A. // Phys. Rev. A/ 1978. V. 18. P. 996.
  19. Радциг А.А., Смирнов Б.М. Параметры атомов и атомных ионов. М.: Энергоатомиздат, 1986, 344 с.
  20. Жигалов О.В., Пиотровский Ю.А., Толмачев Ю.А. // Опт. и спектр. 2004. Т. 97. С. 181.
  21. Havener С.C., Rejoub R. // AIP Conf. Proceed. 2004. V. 730. P. 235. https://doi.org/10.1063/1.1824874
  22. Gurevich A.V., Pitaevskii L.P. // Sov. Phys. JETP. 1964. V. 19. P. 870.
  23. Биберман Л.М., Воробьев В.С., Якубов И.Т. Кинетика неравновесной низкотемпературной плазмы. М.: Наука, 1982.
  24. Mansbach P., Keck J. // Phys. Rev. 1969. V. 181. P. 275.
  25. de Hoog F. J., Oskam H.J. // J. Appl. Phys.1973. V. 44. P. 3496.
  26. Ivanov V.A. // J. Phys. B: Atomic Molecular Opt. Phys. 1998. V. 31. P. 1765.
  27. Johnsen R., Biondi M.A. // Phys. Rev. A 1979. V. 20. P. 221.
  28. Иванов В.А. // Оптика и спектроскопия. 2019. T. 126. P. 247. https://doi.org/10.21883/OS.2019.03.47361.185-18
  29. Иванов В.А. // Оптика и спектроскопия. 2022. Т. 130. С. 996. https://doi.org/10.21883/OS.2022.07.52718.3076-21

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).