ПОВЫШЕНИЕ ЭФФЕКТИВНОСТИ ЛАЗЕРНОГО УСКОРЕНИЯ ПРОТОНОВ С ИСПОЛЬЗОВАНИЕМ СВЕРХТОНКИХ МИШЕНЕЙ

Обложка

Цитировать

Полный текст

Аннотация

Приведены результаты по лазерному ускорению протонов из алюминиевых мишеней толщиной 6 мкм и сверхтонких алмазоподобных углеродных пленок толщиной 100 нм при их облучении фемтосекундными лазерными импульсами с пиковой интенсивностью до 5 ⋅ 1020 Вт/см2. Показано, что уменьшение толщины мишеней с 6 мкм до 100 нм не приводит к существенному изменению максимальных энергий протонов, однако способствует увеличению углового выхода и коэффициента конверсии лазерной энергии. Данный эффект обусловлен ростом количества протонов в низкоэнергетической части спектров, что отразилось на двукратном росте коэффициента конверсии.

Об авторах

А. А Бушухин

ФГУП “Российский федеральный ядерный центр-Всероссийский научно-исследовательский институт технической физики” (РФЯЦ-ВНИИТФ) им. акад. Е. И. Забабахина

Email: dep5@vniitf.ru
Снежинск, Россия

К. В Сафронов

ФГУП “Российский федеральный ядерный центр-Всероссийский научно-исследовательский институт технической физики” (РФЯЦ-ВНИИТФ) им. акад. Е. И. Забабахина

Снежинск, Россия

С. А Горохов

ФГУП “Российский федеральный ядерный центр-Всероссийский научно-исследовательский институт технической физики” (РФЯЦ-ВНИИТФ) им. акад. Е. И. Забабахина

Снежинск, Россия

В. А Флегентов

ФГУП “Российский федеральный ядерный центр-Всероссийский научно-исследовательский институт технической физики” (РФЯЦ-ВНИИТФ) им. акад. Е. И. Забабахина

Снежинск, Россия

Д. О Замураев

ФГУП “Российский федеральный ядерный центр-Всероссийский научно-исследовательский институт технической физики” (РФЯЦ-ВНИИТФ) им. акад. Е. И. Забабахина

Снежинск, Россия

А. Л Шамраев

ФГУП “Российский федеральный ядерный центр-Всероссийский научно-исследовательский институт технической физики” (РФЯЦ-ВНИИТФ) им. акад. Е. И. Забабахина

Снежинск, Россия

С. Ф Ковалёва

ФГУП “Российский федеральный ядерный центр-Всероссийский научно-исследовательский институт технической физики” (РФЯЦ-ВНИИТФ) им. акад. Е. И. Забабахина

Снежинск, Россия

Н. А Фёдоров

ФГУП “Российский федеральный ядерный центр-Всероссийский научно-исследовательский институт технической физики” (РФЯЦ-ВНИИТФ) им. акад. Е. И. Забабахина

Снежинск, Россия

А. В Потапов

ФГУП “Российский федеральный ядерный центр-Всероссийский научно-исследовательский институт технической физики” (РФЯЦ-ВНИИТФ) им. акад. Е. И. Забабахина

Снежинск, Россия

Список литературы

  1. Badziak J. // J. Phys.: Confer. Ser. 2017. V. 959. P. 012001. https://doi.org/10.1088/1742-6596/959/1/012001
  2. Feldman S., Dyer G., Kuk D., Ditmire T. // Phys. Rev. E. 2017. V. 95. P. 031201. https://doi.org/10.1103/PhysRevE.95.031201
  3. Dyer G.M., Bernstein A.C., Cho B.I., Osterholz J., Grigsby W., Dalton A., Shepherd R., Ping Y., Chen H., Widmann K., Ditmire T. // Phys. Rev. Lett. 2008. V. 101. P. 015002. https://doi.org/10.1103/PhysRevLett.101.015002
  4. Hidding B., Karger O., Königstein T., Pretzler G., Manahan G.G., McKenna P., Gray R., Wilson R., Wiggins S.M., Welsh G.H., Beaton A., Delinikolas P., Jaroszynski D.A., Rosenzweig J.B., Karmakar A., Ferlet-Cavrois V., Costantino A., Muschitiello M., Daly E. // Sci. Rep. 2016. V. 7. P. 42354. https://doi.org/10.1038/srep42354
  5. Wilks S.C., Langdon A.B., Cowan T.E., Roth M., Singh M., Hatchett S., Key M.H., Pennington D., MacKinnon A., Snavely R.A. // Phys. Plasmas. 2001. V. 8. P. 542. https://doi.org/10.1063/1.1333697
  6. Poole P.L., Obst L., Cochran G.E., Metzkes J., Schlenvoigt H.-P., Prencipe I., Kluge T., Cowan T., Schramm U., Schumacher D.W., Zeil K. // New J. Phys. 2018. V. 20. P. 013019. https://doi.org/10.1088/1367-2630/aa9d47
  7. Esirkepov T., Borghesi M., Bulanov S.V., Mourou G., Tajima T. // Phys. Rev. Lett. 2004. V. 92. P. 175003. https://doi.org/10.1103/PhysRevLett.92.175003
  8. d’Humires E., Lefebvre E., Gremillet L., Malka V. // Phys. Plasmas. 2005. V. 12. P. 062704. https://doi.org/10.1063/1.1927097
  9. Yin L., Albright B.J., Hegelich B.M., Fernandez J.C. // Laser Part. Beams. 2006. V. 24. P. 291. https://doi.org/10.1017/S0263034606060459
  10. Macchi A., Borghesi M., Passoni M. // Rev. Mod. Phys. 2013. V. 85. P. 751. https://doi.org/10.1103/RevModPhys.85.751
  11. Higginson A., Gray R.J., King M., Dance R.J., Williamson S.D.R., Butler N.M.H., Wilson R., Capdessus R., Armstrong C., Green J.S., Hawkes S.J., Martin P., Wei W.Q., Mirfayzi S.R., Yuan X.H., Kar S., Borghesi M., Clarke R.J., Neely D., McKenna P. // Nature Commun. 2018. V. 9. P. 724. https://doi.org/10.1038/s41467-018-03063-9
  12. Dover N.P., Ziegler T., Assenbaum S., Bernert C., Bock S., Brack F.E., Cowan T.E., Ditter E.J., Garten M., Gaus L., Goethel I., Hicks G.S., Kiriyama H., Kluge T., Koga J.K., Kon A., Kondo K., Kraft S., Kroll F., Lowe H.F., Metzkes N.J., Miyatake T., Najmudin Z., Puschel T., Rehwald M., Reimold M., Sakaki H., Schlenvoigt H.P., Shiokawa K., Umlandt M.E.P., Schramm U., Zeil K., Nishiuchi M. // Light Sci. Appl. 2023. V. 12. P. 71. https://doi.org/10.1038/s41377-023-01083-9
  13. Wagner F., Deppert O., Brabetz C., Fiala P., Kleinschmidt A., Poth P., Schanz V.A., Tebartz A., Zielbauer B., Roth M., Stohlker T., Bagnoud V. // Phys. Rev. Lett. 2016. V. 166. P. 205002. https://doi.org/10.1103/PhysRevLett.116.205002
  14. Liu Z., Gao Y., Wu Q., Pan Z., Liang Y., Song T., Xu T., Shou Y., Zhang Y., Chen H., Han Q., Hua C., Chen X., Xu S., Mei Z., Wang P., Peng Z., Zhao J., Chen S., Zhao Y., Yan X., Ma W. // Phys. Plasmas. 2024. V. 31. P. 053106. https://doi.org/10.1063/5.0195634
  15. Ziegler T., Gothel I., Assenbaum S., Bernert C., Brack F.E., Cowan T.E., Dover N.P., Gaus L., Kluge T., Kraft S., Kroll F., Metzkes-Ng J., Nishiuchi M., Prencipe I., Puschel T., Rehwald M., Reimold M., Schlenvoigt H.P., Umlandt M.E.P., Vescovi M., Schramm U., Zeil K. // Nature Phys. 2024. V. 20. P. 1211. https://doi.org/10.1038/s41567-024-02505-0
  16. Levy A., Ceccotti T., D’Oliveira P., Reau F., Perdrix M., Quere F., Monot P., Bougeard M., Lagadec H., Martin P. // Optics Letters. 2007. V. 32. P. 310. https://doi.org/10.1364/ol.32.000310
  17. Kim I.J., Choi I.W., Janulewicz K.A., Lee J. // J. Optical Society of Korea. 2009. V. 13 (1). P. 15. https://doi.org/10.3807/JOSK.2009.13.1.015
  18. Du D., Liu X., Korn G., Squier J., Mourou G. // Appl. Phys. Lett. 1994. V. 64. P. 3071. https://doi.org/10.1063/1.111350
  19. Kim I.J., Choi I., Lee S.K., Janulewicz K.A., Sung J.H., Yu T.J., Kim H.T., Yun H., Jeong T.M., Lee J. // Appl. Phys. B. 2011. V. 104(1). P. 81. https://doi.org/10.1007/s00340-011-4584-2
  20. Mikhailova J.M., Buck A., Borot A., Schmidt K., Sears C., Tsakiris G.D., Krausz F., Veisz L. // Opt. Lett. 2011. V. 36. P. 3145. https://doi.org/10.1364/OL.36.003145
  21. Higginson A., Wilson R., Goodman J., King M., Dance R.J., Butler N.M.H., Armstrong C.D., Notley M., Carroll D.C., Fang Y., Yuan X.H., Neely D., Gray R.J., McKenna P. // Plasma Phys. Control. Fusion. 2021. V. 63. P. 114001. https://doi.org/10.1088/1361-6587/ac2035
  22. Padda H., King M., Gray R.J., Powell H.W., Gonzalez-Izquierdo B., Stockhaussen L.C., Wilson R., Caroll D.C., Dance R.J., MacLellan D.A., Yuan X.H., Butler N.M.H., Capdessus R., Borghesi M., Neely D., McKenna P. // Phys. Plasmas. 2016. V. 23. P. 063116. https://doi.org/10.1063/1.4954654
  23. Сафронов К.В, Вихляев Д.А., Владимиров А.Г., Гаврилов Д.С., Горохов С.А., Какшин А.Г., Лобода Е.А. Лыков В.А., Мокичева Е.С., Потапов А.В., Пронин В.А., Сапрыкин В.Н., Толстоухов П.А., Чефонов О.В., Чижков М.Н. // Физика Плазмы. 2010. Т. 36. С. 478. https://doi.org/10.1134/S1063780X10050119
  24. Zeil K., Kraft S.D., Bock S., Bussmann M., Cowan T.E., Kluge T., Metzkes-Ng J., Richter T., Sauerbrey R., Schramm U. // New J. Phys. 2010. V. 12. P. 045015. https://doi.org/10.1088/1367-2630/12/4/045015
  25. Fourmaux S., Buffechoux S., Albertazzi B., Capelli D., Levy A., Gnedyuk S., Lecherbourg L., Lassonde P., Payeur S., Anitici P., Pepin H., Marjoribanks R.S., Fuchs J., Kieffer J.C. // Phys. Plasmas. 2013. V. 20. P. 013110. https://doi.org/10.1063/1.4789748
  26. Carrie M., Lefebvre E., Flacco A., Malka V. // Nuclear Instrum. Methods Phys. Res. A. 2010. V. 620 (1). P. 36–40. https://doi.org/10.1016/j.nima.2010.01.056
  27. Mora P. // Phys. Rev. Lett. 2003. V. 90. P. 185002. https://doi.org/10.1103/PhysRevLett.90.185002
  28. Wilks S.C., Kruer W.L. // IEEE J. Quantum Electron. 1997. V. 33 (11). P. 1954. https://doi.org/10.1109/3.641310
  29. Daido H., Nishiuchi M., Pirozhkov A.S. // Reports Prog. Phys. 2012. V. 75. P. 056401. https://doi.org/10.1088/0034-4885/75/5/056401
  30. Levy D., Andriyash I.A., Haessler S., Kaur J., Ouillé M., Flacco A., Kroupp E., Malka V., Lopez-Martens R. // Phys. Rev. Accelerated Beams. 2022. V. 25. P. 093402. https://doi.org/10.1103/PhysRevAccelBeams.25.093402
  31. Bychenkov V.Yu., Singh P.K., Ahmed H., Kakolee K.F., Scullion C., Jeong T.W., Hadjisolomou P., Alejo A., Kar S., Borghesi M., Ter-Avetisyan S. // Phys. Plasmas. 2017. V. 24. P. 010704. https://doi.org/10.1063/1.4975082
  32. Ter-Avetisyan S., Varmazyar P., Singh P.K., Son J.G., Fule M., Bychenkov V.Yu., Farkas B., Nelissen K., Mondal S., Papp D., Borzsonyi A., Csontos J., Lecz Z., Somoskoi T., Toth L., Andriy V., Margarone D., Necas A., Mourou G., Szabo G., Osvay K. // Plasma Phys. Control. Fusion. 2023. V. 65. P. 085012. https://doi.org/10.1088/1361-6587/acde0a
  33. Сафронов К.В., Вихляев Д.А., Владимиров А.Г., Гаврилов Д.С., Горохов С.А., Какшин А.Г., Лобода Е.А., Лыков В.А., Мокичева Е.С., Потапов А.В., Пронин В.А., Сапрыкин В.Н., Толстоухов П.А., Чефонов О.В., Чижков М.Н. // Письма в ЖЭТФ. 2008. Т. 88. С. 830.
  34. Green J.S., Robinson A.P.L., Booth N., Carroll D.C., Dance R.J., Gray R.J., MacLellan D.A., McKenna P., Murphy C.D., Rusby D., Wilson L. // Appl. Phys. Lett. 2014. V. 104. P. 214101. https://doi.org/10.1063/1.4879641

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».