Surface Recombination of Hydrogen Atoms on Pyrex in Medium Pressure Hydrogen Plasma
- 作者: Ziganshin I.I1,2, Galiullin K.R2, Lopaev D.V1,2, Kirillov E.A1,2, Rakhimov A.T1,2
-
隶属关系:
- Skobeltsyn Institute of Nuclear Physics
- Lomonosov Moscow State University
- 期: 卷 51, 编号 4 (2025)
- 页面: 428–437
- 栏目: LOW TEMPERATURE PLASMA
- URL: https://medbiosci.ru/0367-2921/article/view/313091
- DOI: https://doi.org/10.31857/S0367292125040083
- EDN: https://elibrary.ru/GSQNHZ
- ID: 313091
如何引用文章
全文:
详细
作者简介
I. Ziganshin
Skobeltsyn Institute of Nuclear Physics; Lomonosov Moscow State University
Email: ilyaziganshin@gmail.com
Moscow, Russia
K. Galiullin
Lomonosov Moscow State UniversityMoscow, Russia
D. Lopaev
Skobeltsyn Institute of Nuclear Physics; Lomonosov Moscow State University
Email: d.lopaev@gmail.com
Moscow, Russia
E. Kirillov
Skobeltsyn Institute of Nuclear Physics; Lomonosov Moscow State UniversityMoscow, Russia
A. Rakhimov
Skobeltsyn Institute of Nuclear Physics; Lomonosov Moscow State UniversityMoscow, Russia
参考
- Adamovich I., Agarwal S., Ahedo E., Alves L.L., Baalrud S., Babaeva N., Bogaerts A., Bourdon A., Bruggeman P.J., Canal C. et al. // J. Phys. D: Appl. Phys. 2022. V. 55. P. 373001. https://doi.org/10.1088/1361-6463/ac5e1c
- Alves L.L., Becker M.M., van Dijk J., Gans T., Go D.B., Stapelmann K., Tennyson J., Turner M.M., Kushner M.J. // Plasma Sources Sci. Technol. 2023. V. 32. P. 023001. https://doi.org/10.1088/1361-6595/acb810
- Turner M.M. // Plasma Processes Polymers. 2017. V. 14. P. 201600121. https://doi.org/10.1002/ppap.201600121
- Bonitz M., Filinov A., Abraham J.W., Balzer K., KUh-lert H., Pehlke E., Bronold F.X., Pamperin M., Becker M., Loffhagen D., Fehske H. // Front. Chem. Sci. Eng. 2019. V. 13. P. 201.
- Kim Y.C., Boudart M. // Langmuir. 1991. V. 7. P. 2999.
- Booth J.P., Guaitella O., Chatterjee A., Drag C., Guerra V., Lopaev D., Zyryanov S., Rakhimova T., Voloshin D., Mankelevich Y. // 2019. V. 28. P. 055005. https://doi.org/10.1088/1361-6595/ab13e8
- Gubarev V., Lopaev D., Zotovich A., Medvedev V., Krainov P., Astakhov D., Zyryanov S. //J. Appl. Phys. 2022. V. 132. P. 193301.
- Lopaev D.V., Mankelevich Y.A., Kropotkin A.N., Voloshin D.G., Rakhimova T.V. // Plasma Sources Sci. Technol. 2024. V. 33. P. 085002.
- Woodworth J.R., Riley M.E., Amatucci V.A., Hamilton T.W., Aragon B.P. // J. Vacuum Sci. Technol. A: Vacuum, Surfaces, and Films. 2001. V. 19. P. 45.
- Ziganshin I., Galiullin K.R., Lopaev D., Kirillov E.A., Rakhimov A.T. // Plasma Sources Sci. Technol. 2025. V. 34. P. 035007. https://doi.org/10.1088/1361-6595/adbc1b
- Trukhin A.N. // J. Non Crystal Solids. 1992. V. 149. P. 32.
- Lopaev D.V., Smirnov A.V. // Plasma Phys. Reps. 2004. V. 30. P. 882.
- Anon NIST Atomic Spectra Database. https://doi.org/10.18434/T4W30F
- Бровикова И.Н., Галнаскаров Э.Г., Рыбкин В.В., Бессараб А.Б. // Теплофизика высоких температур. 1998. Т. 37. С. 706.
- Smirnov K.S. // Phys. Chem. Chem. Phys. 2021. V. 23. P. 6929.
- Liu H., Kaya H., Lin Y.-T., Ogrinc A., Kim S.H. // J. American Ceramic Soc. 2022. V. 105. P. 2355.
- Ye X., Hu S., Zhang G., Yan Y., Sun Q., Hu Y. // J. Phys. Chem. C. 2025. V. 129. P. 231.
- Macko P., Veis P., Cernogora G. // Plasma Sources Sci. Technol. 2004. V. 13. P. 251.
- Afonso J., Vialetto L., Guerra V., Viegas P. // J. Phys. D: Appl. Phys. 2023. V. 57. P. 04LT01. https://doi.org/10.1088/1361-6463/ad039b
- Rutigliano M., Gamallo P., Sayos R., Orlandini S., Cacciatore M. // Plasma Sources Sci. Technol. 2014. V. 23. P. 045016.
- Karton A. //J. Phys. Chem. A. 2019. V. 123. P. 6720.
- Butera V. // Phys. Chem. Chem. Phys. 2024. V. 26. P. 7950.
- Truhlar D.G., Klippenstein S.J. //J. Phys. Chem. 1996. V. 100. P. 12771. https://doi.org/10.1021/jp953748q
- Granovsky A.A. Firefly version 8.
- Schmidt M.W., Baldridge K.K., Boatz J.A., Elbert S.T., Gordon M.S., Jensen J.H., Koseki S., Matsunaga N., Nguyen K.A., Su S., Windus T.L., Dupuis M., Montgomery J.A. J. Comput. Chem. 1993. V. 14. P. 1347.
- Beletsan O.B., Gordiy I., Lunkov S.S., Kalinin M.A., Alkhimova L.E., Nosach E.A., Ilin E.A., Bespalov A.V., Dallakyan O.L., Chamkin A.A. et al. // Phys. Chem. Chem. Phys. 2024. V. 26. P. 13850.
- Bochenkova A.V., Firsov D.A., Nemukhin A.V. // Chem. Phys. Lett. 2005. V. 405. P. 165.
- Pritchard B.P., Altarawy D., Didier B., Gibson T.D., Windus T.L. // J. Chem. Information Modelling. 2019. V. 59. P. 4814.
- Burke K., Wagner L.O. // Int. J. Quantum Chem. 2013. V. 113. P. 96.
- Becke A.D. //J. Chem. Phys. 1993. V. 98. P. 5648.
- Lee C., Yang W., Parr R.G. // Phys. Rev. B. 1988. V. 37. P. 785. https://doi.org/10.1103/PhysRevB.37.785
- Caldeweyher E., Mewes J.-M., Ehlert S., Grimme S. // Phys. Chem. Chem. Phys. 2020. V. 22. P. 8499.
- Saitow M., Becker U., Riplinger C., Valeev E.F., Neese F. // J. Chem. Phys. 2017. V. 146. P. 164105. https://doi.org/10.1063/1.4981521
- Riplinger C., Sandhoefer B., Hansen A., Neese F. // J. Chem. Phys. 2013. V. 139. P. 134101. https://doi.org/10.1063/1.4821834
- Karton A. // J. Phys. Chem. A. 2019. V. 123. P. 6720.
- Neese F. // WIREs Computat. Molecular Sci. 2022. V. 12. P. e1606. https://doi.org/10.1002/wcms.1606
- Sandler I., Chen J., Taylor M., Sharma S., Ho J. // J. Phys. Chem. A. 2021. V. 125. P. 1553.
- Feller D., Peterson K.A. // J. Chem, Phys. 2007. V. 126. P. 114105.
- Ramabhadran R., Raghavachari K. // J. Comput. Chem. 2015. V. 37. P. 286. https://doi.org/10.1002/jcc.24050
- Denisov E.T. // Russian Chem. Revs. 2000. V. 69. P. 153.
补充文件
