Surface Recombination of Hydrogen Atoms on Pyrex in Medium Pressure Hydrogen Plasma
- Autores: Ziganshin I.I1,2, Galiullin K.R2, Lopaev D.V1,2, Kirillov E.A1,2, Rakhimov A.T1,2
-
Afiliações:
- Skobeltsyn Institute of Nuclear Physics
- Lomonosov Moscow State University
- Edição: Volume 51, Nº 4 (2025)
- Páginas: 428–437
- Seção: LOW TEMPERATURE PLASMA
- URL: https://medbiosci.ru/0367-2921/article/view/313091
- DOI: https://doi.org/10.31857/S0367292125040083
- EDN: https://elibrary.ru/GSQNHZ
- ID: 313091
Citar
Texto integral
Resumo
Sobre autores
I. Ziganshin
Skobeltsyn Institute of Nuclear Physics; Lomonosov Moscow State University
Email: ilyaziganshin@gmail.com
Moscow, Russia
K. Galiullin
Lomonosov Moscow State UniversityMoscow, Russia
D. Lopaev
Skobeltsyn Institute of Nuclear Physics; Lomonosov Moscow State University
Email: d.lopaev@gmail.com
Moscow, Russia
E. Kirillov
Skobeltsyn Institute of Nuclear Physics; Lomonosov Moscow State UniversityMoscow, Russia
A. Rakhimov
Skobeltsyn Institute of Nuclear Physics; Lomonosov Moscow State UniversityMoscow, Russia
Bibliografia
- Adamovich I., Agarwal S., Ahedo E., Alves L.L., Baalrud S., Babaeva N., Bogaerts A., Bourdon A., Bruggeman P.J., Canal C. et al. // J. Phys. D: Appl. Phys. 2022. V. 55. P. 373001. https://doi.org/10.1088/1361-6463/ac5e1c
- Alves L.L., Becker M.M., van Dijk J., Gans T., Go D.B., Stapelmann K., Tennyson J., Turner M.M., Kushner M.J. // Plasma Sources Sci. Technol. 2023. V. 32. P. 023001. https://doi.org/10.1088/1361-6595/acb810
- Turner M.M. // Plasma Processes Polymers. 2017. V. 14. P. 201600121. https://doi.org/10.1002/ppap.201600121
- Bonitz M., Filinov A., Abraham J.W., Balzer K., KUh-lert H., Pehlke E., Bronold F.X., Pamperin M., Becker M., Loffhagen D., Fehske H. // Front. Chem. Sci. Eng. 2019. V. 13. P. 201.
- Kim Y.C., Boudart M. // Langmuir. 1991. V. 7. P. 2999.
- Booth J.P., Guaitella O., Chatterjee A., Drag C., Guerra V., Lopaev D., Zyryanov S., Rakhimova T., Voloshin D., Mankelevich Y. // 2019. V. 28. P. 055005. https://doi.org/10.1088/1361-6595/ab13e8
- Gubarev V., Lopaev D., Zotovich A., Medvedev V., Krainov P., Astakhov D., Zyryanov S. //J. Appl. Phys. 2022. V. 132. P. 193301.
- Lopaev D.V., Mankelevich Y.A., Kropotkin A.N., Voloshin D.G., Rakhimova T.V. // Plasma Sources Sci. Technol. 2024. V. 33. P. 085002.
- Woodworth J.R., Riley M.E., Amatucci V.A., Hamilton T.W., Aragon B.P. // J. Vacuum Sci. Technol. A: Vacuum, Surfaces, and Films. 2001. V. 19. P. 45.
- Ziganshin I., Galiullin K.R., Lopaev D., Kirillov E.A., Rakhimov A.T. // Plasma Sources Sci. Technol. 2025. V. 34. P. 035007. https://doi.org/10.1088/1361-6595/adbc1b
- Trukhin A.N. // J. Non Crystal Solids. 1992. V. 149. P. 32.
- Lopaev D.V., Smirnov A.V. // Plasma Phys. Reps. 2004. V. 30. P. 882.
- Anon NIST Atomic Spectra Database. https://doi.org/10.18434/T4W30F
- Бровикова И.Н., Галнаскаров Э.Г., Рыбкин В.В., Бессараб А.Б. // Теплофизика высоких температур. 1998. Т. 37. С. 706.
- Smirnov K.S. // Phys. Chem. Chem. Phys. 2021. V. 23. P. 6929.
- Liu H., Kaya H., Lin Y.-T., Ogrinc A., Kim S.H. // J. American Ceramic Soc. 2022. V. 105. P. 2355.
- Ye X., Hu S., Zhang G., Yan Y., Sun Q., Hu Y. // J. Phys. Chem. C. 2025. V. 129. P. 231.
- Macko P., Veis P., Cernogora G. // Plasma Sources Sci. Technol. 2004. V. 13. P. 251.
- Afonso J., Vialetto L., Guerra V., Viegas P. // J. Phys. D: Appl. Phys. 2023. V. 57. P. 04LT01. https://doi.org/10.1088/1361-6463/ad039b
- Rutigliano M., Gamallo P., Sayos R., Orlandini S., Cacciatore M. // Plasma Sources Sci. Technol. 2014. V. 23. P. 045016.
- Karton A. //J. Phys. Chem. A. 2019. V. 123. P. 6720.
- Butera V. // Phys. Chem. Chem. Phys. 2024. V. 26. P. 7950.
- Truhlar D.G., Klippenstein S.J. //J. Phys. Chem. 1996. V. 100. P. 12771. https://doi.org/10.1021/jp953748q
- Granovsky A.A. Firefly version 8.
- Schmidt M.W., Baldridge K.K., Boatz J.A., Elbert S.T., Gordon M.S., Jensen J.H., Koseki S., Matsunaga N., Nguyen K.A., Su S., Windus T.L., Dupuis M., Montgomery J.A. J. Comput. Chem. 1993. V. 14. P. 1347.
- Beletsan O.B., Gordiy I., Lunkov S.S., Kalinin M.A., Alkhimova L.E., Nosach E.A., Ilin E.A., Bespalov A.V., Dallakyan O.L., Chamkin A.A. et al. // Phys. Chem. Chem. Phys. 2024. V. 26. P. 13850.
- Bochenkova A.V., Firsov D.A., Nemukhin A.V. // Chem. Phys. Lett. 2005. V. 405. P. 165.
- Pritchard B.P., Altarawy D., Didier B., Gibson T.D., Windus T.L. // J. Chem. Information Modelling. 2019. V. 59. P. 4814.
- Burke K., Wagner L.O. // Int. J. Quantum Chem. 2013. V. 113. P. 96.
- Becke A.D. //J. Chem. Phys. 1993. V. 98. P. 5648.
- Lee C., Yang W., Parr R.G. // Phys. Rev. B. 1988. V. 37. P. 785. https://doi.org/10.1103/PhysRevB.37.785
- Caldeweyher E., Mewes J.-M., Ehlert S., Grimme S. // Phys. Chem. Chem. Phys. 2020. V. 22. P. 8499.
- Saitow M., Becker U., Riplinger C., Valeev E.F., Neese F. // J. Chem. Phys. 2017. V. 146. P. 164105. https://doi.org/10.1063/1.4981521
- Riplinger C., Sandhoefer B., Hansen A., Neese F. // J. Chem. Phys. 2013. V. 139. P. 134101. https://doi.org/10.1063/1.4821834
- Karton A. // J. Phys. Chem. A. 2019. V. 123. P. 6720.
- Neese F. // WIREs Computat. Molecular Sci. 2022. V. 12. P. e1606. https://doi.org/10.1002/wcms.1606
- Sandler I., Chen J., Taylor M., Sharma S., Ho J. // J. Phys. Chem. A. 2021. V. 125. P. 1553.
- Feller D., Peterson K.A. // J. Chem, Phys. 2007. V. 126. P. 114105.
- Ramabhadran R., Raghavachari K. // J. Comput. Chem. 2015. V. 37. P. 286. https://doi.org/10.1002/jcc.24050
- Denisov E.T. // Russian Chem. Revs. 2000. V. 69. P. 153.
Arquivos suplementares
