Studying the immunopathogenesis of Ebola virus disease using flow cytometry

Cover Image

Cite item

Abstract

The Ebola virus disease (EVD) has posed a constant threat to public health since it was first identified in 1976. Flow cytometry (FC) is one of the leading methods for studying EVD.

The aim of this review is to examine the features of the immunopathogenesis of the EVD, the study of which has become possible thanks to the use of the FC method.

The use of FC and methods based on FC technology (Luminex xMAP, CyTOF) has revealed facts about the immunopathogenesis of EVD: cytotoxic lymphocytes play a leading role in protecting against infection; dendritic cells are an early target of Ebola virus (EV); elimination of NK cells at an early stage of the disease may be the reason for the host's inability to provide a sustained immune response; “evasion” of the virus from the immune response. Fatal outcomes in EVD are associated with an aberrant innate immune response and suppression of adaptive immunity. The immune response in this case is characterized by a “cytokine storm.” Immunosuppression in EVD is manifested by low levels of circulating cytokines and loss of peripheral T lymphocytes. The key factors for the outcome of the infection are the timing and kinetics of viral replication and the immune response. In those who have recovered from the disease, T-cell activation, proliferation, and the formation of specific antiviral cytotoxicity, cellular and humoral immunity, and immunological memory occur. It has been established that an effective criterion for assessing the antigen-specific T-cell immune response formed upon administration of vaccines against EVD is the proportion of multifunctional T-lymphocytes. The phosphatidylserine receptor TIM-1 plays a central role in the penetration of the virus into the body, its spread, and the development of a “cytokine storm.” Inhibition of intercellular transmission of EV depends on the host protein BST2/teperin/CD317. The flow cytometry method allows the detection of viral particles damaged during the production of the EVD vaccine. Issues related to sample preparation for FC of samples containing EV are discussed.

Using the capabilities of FC, it remains to be studied the innate and adaptive responses of the immune system related to the pathogenesis of the EVD at the level of the whole organism, cells, and molecules.

About the authors

Galina V. Borisevich

48 Central Scientific Research Institute

Author for correspondence.
Email: 48cnii@mil.ru
ORCID iD: 0000-0002-0843-9427

Сand. Sci. (Biol.), senior researcher

Russian Federation, Sergiev Posad

Aleksander V. Ovchinnikov

48 Central Scientific Research Institute

Email: 48cnii@mil.ru
ORCID iD: 0000-0003-2309-3572

Cand. Sci. (Tech.), senior researcher

Russian Federation, Sergiev Posad

Svetlana L. Kirillova

48 Central Scientific Research Institute

Email: 48cnii@mil.ru
ORCID iD: 0000-0003-1245-9225

Dr. Sci. (Biol.), leading researcher

Russian Federation, Sergiev Posad

Anna S. Turavinina

48 Central Scientific Research Institute

Email: 48cnii@mil.ru
ORCID iD: 0009-0000-5662-6799

laboratory researche

Russian Federation, Sergiev Posad

References

  1. Shapiro H.M. Practical Flow Cytometry, 4th Edition. 2003.
  2. Adan A., Alizada G., Kiraz Y., et al. Flow cytometry: basic principles and applications. Crit. Rev. Biotechnol. 2017;37(2): 163–76. DOI: https://doi.org/10.3109/07388551.2015.1128876
  3. Geisbert T.W., Hensley L.E., Larsen T., et al. Pathogenesis of Ebola hemorrhagic fever in cynomolgus macaques evidence that dendritic cells are early and sustained targets of infection. Amer. J. Pathol. 2003;163(6):2347–70. DOI: https://doi.org/10.1016/S0002-9440(10)63591-2
  4. Reed D.S., Hensley L.E., Geisbert J.B., et al. Depletion of peripheral blood T lymphocytes and NK cells during the course of Ebola hemorrhagic fever in cynomolgus macaques. Viral Immunol. 2004;17(3):390–400. DOI: https://doi.org/10.1089/vim.2004.17.390
  5. Banchereau J., Briere F., Caux C., et al. Immunobiology of dendritic cells. Annu. Rev. Immunol. 2000;18:767–811. DOI: 10837075' target='_blank'>https://doi.org/10.1146/annurev.immunol.18.1.767.PMID: 10837075
  6. Sullivan N.J., Hensley L., Asiedu C., et al. CD8+ cellular immunity mediates rAd5 vaccine protection against Ebola virus infection of nonhuman primates. Nat. Med. 2011;17(9):1128–31. DOI: https://doi.org/10.1038/nm.2447
  7. Stanley D.A., Honko A.N., Asiedu C., et al. Chimpanzee adenovirus vaccine generates acute and durable protective immunity against ebolavirus challenge. Nat. Med. 2014; 20(10):1126–9. DOI: https://doi.org/10.1038/nm.3702
  8. Thom R., Tipton T., Strecker T., et al. Longitudinal antibody and T cell responses in Ebola virus disease survivors and contacts: an observational cohort study. Lancet Infect. Dis. 2021;21(4): 507–16. DOI: https://doi.org/10.1016/S1473-3099(20)30736-2
  9. Ewer K., Rampling T., Venkatraman N., et al. A monovalent chimpanzee adenovirus Ebola vaccine boosted with MVA. N. Engl. J. Med. 2016;374(17):1635–46. DOI: https://doi.org/10.1056/NEJMoa1411627
  10. Raabe V., Lai L., Morales J., et al. Cellular and humoral immunity to Ebola Zaire glycoprotein and viral vector proteins following immunization with recombinant vesicular stomatitis virus-based Ebola vaccine (rVSVΔG-ZEBOV-GP). Vaccine. 2023;41(8):1513–23. DOI: https://doi.org/10.1016/j.vaccine.2023.01.059
  11. Downs I., Johnson J.C., Rossi F., et al. Natural history of aerosol-induced Ebola virus disease in rhesus macaques. Viruses. 2021;13(11):2297. DOI: https://doi.org/10.3390/v13112297
  12. Twenhafel N.A., Mattix M.E., Johnson J.C., et al. Pathology of experimental aerosol Zaire ebolavirus infection in rhesus macaques. Vet. Pathol. 2013;50(3):514–29. DOI: https://doi.org/10.1177/0300985812469636
  13. Борисевич Г.В., Кириллова С.Л., Шатохина И.В. и др. Оценка клеточного иммунитета макаков резусов методом проточной цитометрии после экспериментального инфицирования вирусом Эбола (Filoviridae; Ebolavirus: Zaire ebolavirus). Вопросы вирусологии. 2021;66(4):289–98. Borisevich G.V., Kirillova S.L., Shatokhina I.V., et al. Flow cytometry evaluation of the rhesus monkey cellular immunity following the Zaire ebolavirus (Filoviridae; Ebolavirus: Zaire ebolavirus) experimental infection. Problems of Virology. 2021;66(4): 289–98. DOI: https://doi.org/10.36233/0507-4088-64 EDN: https://elibrary.ru/kzzglw
  14. Sanchez A., Lukwiya M., Bausch D., et al. Analysis of human peripheral blood samples from fatal and nonfatal cases of Ebola (Sudan) hemorrhagic fever: cellular responses, virus load, and nitric oxide levels. J. Virol. 2004;78(19):10370–7. DOI: https://doi.org/JVI.78.19.10370–10377.2004
  15. Gupta M., Spiropoulou C., Rollin P.E. Ebola virus infection of human PBMCs causes massive death of macrophages, CD4 and CD8 T cell sub-populations in vitro. Virol. 2007;364(1):45–54. DOI: https://doi.org/10.1016/j.virol.2007.02.017
  16. Ma Y.J., Dissen G.A., Rage F., Ojeda S.R. RNase protection assay. Methods. 1996;10(3):273–8. DOI: https://doi.org/10.1006/meth.1996.0102
  17. Wauquier N., Becquart P., Padilla C., et al. Human fatal Zaire Ebola virus infection is associated with an aberrant innate immunity and with massive lymphocyte apoptosis. PLoS Negl. Trop. Dis. 2010;4(10):e837. DOI: https://doi.org/10.1371/journal.pntd.0000837
  18. McElroy A.K., Akondy R.S., Davis C.W., Ellebedy A.H. Human Ebola virus infection results in substantial immune activation. Proc. Natl Acad. Sci. 2015;112(15):4719–24. DOI: https://doi.org/10.1073/pnas.1502619112
  19. Fink K. Origin and function of circulating plasmablasts during acute viral infections. Front. Immunol. 2012;3:78. DOI: https://doi.org/10.3389/fimmu.2012.00078
  20. Miller J.D., van der Most R.G., Akondy R.S., et al. Human effector and memory CD8+ T cell responses to smallpox and yellow fever vaccines. Immunity. 2008;28(5):710–22. DOI: https://doi.org/10.1016/j.immuni.2008.02.020
  21. Agrati C., Castilletti C., Casetti R., et al. Longitudinal characterization of dysfunctional T cell-activation during human acute Ebola infection. Cell Death Dis. 2016;7(3):e2164. DOI: https://doi.org/10.1038/cddis.2016.55
  22. Petrosillo N., Nicastri E., Lanini S., et al. Ebola virus disease complicated with viral interstitial pneumonia: a case report. BMC Infect. Dis. 2015;15:432. DOI: https://doi.org/10.1186/s12879-015-1169-4
  23. Di Caro A., Puro V., Fusco F.M., et al. The added value of long-lasting preparedness for the management of a patient with Ebola. Eur. J. Intern. Med. 2015;26(6):451–2. DOI: https://doi.org/10.1016/j.ejim.2015.03.005
  24. Cianfanelli V., De Zio D., Di Bartolomeo S., et al. Ambra1 at a glance. J. Cell. Sci. 2015;128(11):2003–8. DOI: https://doi.org/10.1242/jcs.168153
  25. Кудрявцев И.В. Т-клетки памяти: основные популяции и стадии дифференцировки. Российский иммунологический журнал. 2014;8(4):947–64. Kudryavtsev I.V. Memory T-cell: major populations and stages of differentiation. Russian Journal of Immunology. 2014;8(4):947–64. EDN: https://elibrary.ru/teyxhr
  26. Lyon G.M., Mehta A.K., Varkey J.B., et al. Emory Serious Communicable Diseases Unit. Clinical care of two patients with Ebola virus disease in the United States. N. Engl. J. Med. 2014;371(25):2402–9. DOI: https://doi.org/10.1056/NEJMoa1409838
  27. Mandla J.N., Feinberg M.B. Robust and sustained immune activation in human Ebola virus infection. Proc. Natl Acad. Sci. 2015;112(15):4519. DOI: https://doi.org/10.1073/pnas.1503864112
  28. Dahlke C., Lunemann S., Kasonta R., et al. Comprehensive characterization of cellular immune responses following Ebola virus infection. J. Infect. Dis. 2017;215(2):287–92. DOI: https://doi.org/10.1093/infdis/jiw508
  29. Kreuels B., Wichmann D., Emmerich P., et al. A case of severe Ebola virus infection complicated by gram-negative septicemia. N. Engl. J. Med. 2014;371(25):2394–401. DOI: https://doi.org/10.1056/NEJMoa1411677
  30. La Vergne S.M., Sakabe S., Kanneh L., et al. Ebola-Specific CD8+ and CD4+ T-cell responses in Sierra Leonean Ebola virus survivors with or without post-Ebola sequelae. J. Infect. Dis. 2020;222(9):1488–97. DOI: https://doi.org/10.1093/infdis/jiaa268
  31. Whitt M. Generation of VSV pseudotypes and using recombinant G-VSV for studies on virus entry, identification of entry inhibitors, and immune responses to vaccines. J. Virol. Methods. 2010;169:65–74. DOI: https://doi.org/10.1016/j.jviromet.2010.08.006
  32. Sakabe S., Sullivan B.M., Hartnett J.N., et al. Analysis of CD8+ T cell response during the 2013-2016 Ebola epidemic in West Africa. Proc. Natl Acad. Sci. USA. 2018;115(32):E7578–86. DOI: https://doi.org/10.1073/pnas.1806200115
  33. Rowe A.K., Bertolli J., Khan A.S., et al. Clinical, virologic, and immunologic follow-up of convalescent Ebola hemorrhagic fever patients and their household contacts, Kikwit, Democratic Republic of the Congo. Commission de Lutte contre les Epidémies à Kikwit. J. Infect. Dis. 1999;179(Suppl. 1):28–35. DOI: http://doi.org/10.1086/514318
  34. Uyeki T.M., Erickson B.R., Brown S., et al. Ebola virus persistence in semen of male survivors. Clin. Infect. Dis. 2016;62(12):1552–5. DOI: https://doi.org/10.1093/cid/ciw202
  35. MacIntyre C., Chughtai A. Recurrence and reinfection — a new paradigm for the management of Ebola virus disease. Int. J. Infect. Dis. 2016;43:58–61. DOI: https://doi.org/10.1016/j.ijid.2015.12.011
  36. Bolton D.L., Roederer M. Flow cytometry and the future of vaccine development. Expert. Rev. Vaccines. 2009;8(6):779–89. DOI: https://doi.org/10.1586/erv.09.41
  37. Milligan I.D., Gibani M.M., Sewell R., et al. Safety and immunogenicity of novel adenovirus type 26- and modified vaccinia Ankara-vectored Ebola vaccines: a randomized clinical trial. JAMA. 2016;315(15):1610–23. DOI: https://doi.org/10.1001/jama.2016.4218
  38. Pollard A.J., Launay O., Lelievre J.D., et al. Safety and immunogenicity of a two-dose heterologous Ad26.ZEBOV and MVA-BN-Filo Ebola vaccine regimen in adults in Europe (EBOVAC2): a randomised, observer-blind, participant-blind, placebo-controlled, phase 2 trial. Lancet Infect. Dis. 2021;21(4):493–506. DOI: https://doi.org/10.1016/S1473-3099(20)30476-X
  39. Zhu F.C., Hou L.H., Li J.X., et al. Safety and immunogenicity of a novel recombinant adenovirus type-5 vector-based Ebola vaccine in healthy adults in China: preliminary report of a randomized, double-blind, placebo-controlled, phase I trial. Lancet. 2015;385(9984):2272–9. DOI: https://doi.org/10.1016/s0140-6736(15)60553-0
  40. Venkatraman N., Ndiaye B.P., Bowyer G., et al. Safety and immunogenicity of a heterologous prime-boost Ebola virus vaccine regimen in healthy adults in the United Kingdom and Senegal. J. Infect. Dis. 2019;219(8):1187–97. DOI: https://doi.org/10.1093/infdis/jiy639
  41. Kibuuka H., Berkowitz N.M., Millard M., et al. Safety and immunogenicity of Ebola virus and Marburg virus glycoprotein DNA vaccines assessed separately and concomitantly in healthy Ugandan adults: A phase 1b, randomised, double-blind, placebo-controlled clinical trial. Lancet. 2015;385(9977):1545–54. DOI: https://doi.org/10.1016/S0140-6736(14)62385-0
  42. Ковыршина А.В., Сизикова Т.Е., Лебедев В.Н. и др. Вакцины против болезни, вызванной вирусом Эбола: актуальные проблемы и перспективы. Вопросы вирусологии. 2023;68(5):372–84. Kovyrshina A.V., Sizikova T.E., Lebedev V.N., et al. Vaccines to prevent Ebola virus disease: current challenges and perspectives. Problems of Virology. 2023;68(5):372–84. DOI: https://doi.org/10.36233/0507-4088-193 EDN: https://elibrary.ru/euauhi
  43. Darrah P.A., Patel D.T., De Luca P.M., et al. Multifunctional TH1 cells define a correlate of vaccine-mediated protection against Leishmania major. Nat. Med. 2007;13(7):843–50. DOI: https://doi.org/10.1038/nm1592
  44. Lyons A.B. Analysing cell division in vivo and in vitro using flow cytometric measurement of CFSE dye dilution. J. Immunol. Methods. 2000;243(1-2):147–54. DOI: https://doi.org/10.1016/s0022-1759(00)00231-3
  45. Wallace P.K., Tario J.D., Fisher J.L., et al. Tracking antigen-driven responses by flow cytometry: monitoring proliferation by dye dilution. Cytometry A. 2008;73(11):1019–34. DOI: https://doi.org/10.1002/cyto.a.20619
  46. Dolzhikova I.V., Zubkova O.V., Tukhvatulin A.I., et al. Safety and immunogenicity of GamEvac-Combi, a heterologous VSV- and Ad5-vectored Ebola vaccine: An open phase I/II trial in healthy adults in Russia. Hum. Vaccines Immunother. 2017;13(3):613–20. DOI: https://doi.org/10.1080/21645515.2016.1238535
  47. Brunton B., Rogers K., Phillips E.K., et al. TIM-1 serves as a receptor for Ebola virus in vivo, enhancing viremia and pathogenesis. PLoS Negl. Trop. Dis. 2019;13(6):e0006983. DOI: https://doi.org/10.1371/journal.pntd.0006983
  48. Moller-Tank S., Kondratowicz A.S., Davey R.A., et al. Role of the phosphatidylserine receptor TIM-1 in enveloped-virus entry. J. Virol. 2013;87:8327–41. DOI: https://doi.org/10.1128/JVI.01025-13
  49. Curtiss M., Colgan J. The role of the T-cell costimulatory molecule Tim-1 in the immune response. Immunol. Res. 2007;39:52–61. DOI: https://doi.org/10.1007/s12026-007-0063-6
  50. Degauque N., Mariat C., Kenny J., et al. Immunostimulatory Tim-1-specific antibody deprograms Tregs and prevents transplant tolerance in mice. J. Clin. Invest. 2008;118:735–41. DOI: https://doi.org/10.1172/JCI32562
  51. Kobayashi N., Karisola P., Peña-Cruz V., et al. TIM-1 and TIM-4 glycoproteins bind phosphatidylserine and mediate uptake of apoptotic cells. Immunity. 2007;27:927–40. DOI: https://doi.org/10.1016/j.immuni.2007.11.011
  52. Du P., Xiong R., Li X., Jiang J. Immune regulation and antitumor effect of TIM-1. J. Immunol. Res. 2016;2016:8605134. DOI: https://doi.org/10.1155/2016/8605134
  53. Younan P., Iampietro M., Nishida A., et al. Ebola virus binding to Tim-1 on T Lymphocytes induces a cytokine storm. mBio. 2017;8(5):e00845–17. DOI: https://doi.org/10.1128/mBio.00845-17
  54. Bray M., Davis K., Geisbert T., et al. A mouse model for evaluation of prophylaxis and therapy of Ebola hemorrhagic fever. J. Infect. Dis. 1998;178:651–61. DOI: https://doi.org/10.1086/515386
  55. Towner J.S., Paragas J., Dover J.E., et al. Generation of eGFP expressing recombinant Zaire Ebolavirus for analysis of early pathogenesis events and high-throughput antiviral drug screening. Virology. 2005;332:20–7. DOI: https://doi.org/10.1016/j.virol.2004.10.048
  56. Santos R.I., Ilinykh P.A., Pietzsch C.A., et al. Blocking of ebolavirus spread through intercellular connections by an MPER-specific antibody depends on BST2/tetherin. Cell Rep. 2023;42(10):113254. DOI: https://doi.org/10.1016/j.celrep.2023.113254
  57. Heler R., Samai P., Modell J.W., et al. Cas9 specifies functional viral targets during CRISPR-Cas adaptation. Nature. 2015;519(7542):199–202. DOI: https://doi.org/10.1038/nature14245
  58. Ilinykh P.A., Santos R.I., Gunn B.M., et al. Asymmetric antiviral effects of ebolavirus antibodies targeting glycoprotein stem and glycan cap. PLoS Pathog. 2018;14(8):e1007204. DOI: https://doi.org/10.1371/journal.ppat.1007204
  59. Phillips D.M. The role of cell-to-cell transmission in HIV infection. AIDS. 1994;8(6):719–31. DOI: https://doi.org/10.1097/00002030-199406000-00001
  60. Mothes W., Sherer N.M., Jin J., Zhong P. Virus cell-to-cell transmission. J. Virol. 2010;84(17):8360–8. DOI: https://doi.org/10.1128/JVI.00443-10
  61. Jouvenet N., Windsor M., Rietdorf J., et al. African swine fever virus induces filopodialike projections at the plasma membrane. Cell Microbiol. 2006;8(11):1803–11. DOI: https://doi.org/10.1111/j.1462-5822.2006.00750
  62. Miao C., Li M., Zheng Y.M., et al. Cell-cell contact promotes Ebola virus GP-mediated infection. Virology. 2016;488:202–15. DOI: https://doi.org/10.1016/j.virol.2015.11.019
  63. Yasuda J. Ebolavirus replication and tetherin/BST-2. Front. Microbiol. Sec. Virology. 2012;3:111. DOI: https://doi.org/10.3389/fmicb.2012.00111
  64. Neil S.J.D., Zang T., Bieniasz P.D. Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu. Nature. 2008;451(7177):425–30. DOI: https://doi.org/10.1038/nature06553
  65. Kühl A., Banning C., Marzi A., et al. The Ebola virus glycoprotein and HIV-1 Vpu employ different strategies to counteract the antiviral factor tetherin. J. Infect. Dis. 2011; 204(Suppl. 3):850–60. DOI: https://doi.org/10.1093/infdis/jir378
  66. Elshal M.F., McCoy J.P. Multiplex bead array assays: performance evaluation and comparison of sensitivity to ELISA. Method. 2006;38(4):317–23. DOI: https://doi.org/10.1016/j.ymeth.2005.11.010
  67. Bernhard O.K., Mathias R.A., Barnes T.W., Simpson R.J. A fluorescent microsphere-based method for assay of multiple analytes in plasma. Methods Mol. Biol. 2011;728:195–206. DOI: https://doi.org/10.1007/978-1-61779-068-3_12
  68. Ahsan H. Monoplex and multiplex immunoassays: approval, advancements, and alternatives. Comp. Clin. Path. 2022;31(2):333–45. DOI: https://doi.org/1010.1007/s00580-021-03302-4
  69. Ayouba A., Touré A., Butel C., et al. Development of a sensitive and specific serological assay based on luminex technology for detection of antibodies to Zaire Ebola virus. J. Clin. Microbiol. 2016;55(1):165–76. DOI: https://doi.org/10.1128/JCM.01979-16
  70. Sow M.S., Etard J.F., Baize S., et al. New evidence of long-lasting persistence of Ebola virus genetic material in semen of survivors. J. Infect. Dis. 2016;214(10):1475–6. DOI: https://doi.org/10.1093/infdis/jiw078
  71. PostEboGui. URL: https://postebogui.wordpress.com
  72. Surtees R., Stern D., Ahrens K., et al. Development of a multiplex microsphere immunoassay for the detection of antibodies against highly pathogenic viruses in human and animal serum samples. PLoS. Negl. Trop. Dis. 2020;14(10):e0008699. DOI: https://doi.org/10.1371/journal.pntd.0008699
  73. Saijo M., Niikura M., Morikawa S., et al. Enzyme-linked immunosorbent assays for detection of antibodies to Ebola and Marburg viruses using recombinant nucleoproteins. J. Clin. Microbiol. 2001;39(1):1–7. DOI: https://doi.org/10.1128/JCM.39.1.1-7.2001
  74. Yoshimatsu K., Arikawa J. Antigenic properties of N protein of hantavirus. Viruses. 2014;6(8):3097–109. DOI: https://doi.org/10.3390/v6083097
  75. Sas M.A., Comtet L., Donnet F., et al. A novel double-antigen sandwich ELISA for the species-independent detection of Crimean-Congo hemorrhagic fever virus-specific antibodies. Antiviral Res. 2018;151:24–6. DOI: https://doi.org/10.1016/j.antiviral.2018.01.006
  76. Jansen van Vuren P., Potgieter A.C., Paweska J.T., van Dijk A.A. Preparation and evaluation of a recombinant Rift Valley fever virus N protein for the detection of IgG and IgM antibodies in humans and animals by indirect ELISA. J. Virol. Methods. 2007;140(1-2):106–14. DOI: https://doi.org/10.1016/j.jviromet.2006.11.005
  77. Vu H., Shulenin S., Grolla A., et al. Quantitative serology assays for determination of antibody responses to Ebola virus glycoprotein and matrix protein in nonhuman primates and humans. Antiviral Res. 2016;126:55–61. DOI: https://doi.org/10.1016/j.antiviral.2015.11.012
  78. Tanner S.D., Baranov V.I., Ornatsky O.I., et al. An introduction to mass cytometry: fundamentals and applications. Cancer Immunol. Immunother. 2013;62(5):955–65. DOI: https://doi.org/10.1007/s00262-013-1416-8
  79. Leipold M.D., Newell E.W., Maecker H.T. Multiparameter phenotyping of human PBMCs using mass cytometry. Methods. Mol. Biol. 2015;1343:81–95. DOI: https://doi.org/10.1007/978-1-4939-2963-4_7
  80. McElroy A.K., Akondy R.S., Mcllwain D.R., et al. Immunologic timeline of Ebola virus disease and recovery in humans. JCI Insight. 2020;5(10):e137260. DOI: https://doi.org/10.1172/jci.insight.137260
  81. Liddell A.M., Davey R.T. Jr., Mehta A.K., et al. Characteristics and clinical management of a cluster of 3 patients with Ebola virus disease, including the first domestically acquired cases in the United States. Ann. Intern. Med. 2015;163(2):81–90. DOI: https://doi.org/10.7326/m15-0530
  82. Maltseva M., Langlois M.A. Flow virometry for characterizing the size, concentration, and surface antigens of viruses. Curr. Protoc. 2022;2(2):e368. DOI: https://doi.org/10.1002/cpz1.368
  83. Ricci G., Minsker K., Kapish A., et al. Flow virometry for process monitoring of live virus vaccines-lessons learned from ERVEBO. Sci. Rep. 2021;11(1):7432. DOI: https://doi.org/10.1038/s41598-021-86688-z
  84. Lanier L.L. Warner Paraformaldehyde fixation of hematopoietic cells for quantitative flow cytometry (FACS) analysis. J. Immunol. Methods. 1981;47(1):25–30. DOI: https://doi.org/10.1016/0022-1759(81)90253-2
  85. Lifson J.D., Sasaki D.T., Engleman E.G. Utility of formaldehyde fixation for flow cytometry and inactivation of the AIDS associated retrovirus. J. Immunol. Methods. 1986;86(1):143–9. DOI: https://doi.org/10.1016/0022-1759(86)90278-4
  86. Lal B., Edison L.J., Chused T.M. Fixation and long-term storage of human lymphocytes for surface marker analysis by flow cytometry. Cytometry. 1988;9(3):213–9. DOI: https://doi.org/10.1002/cyto.990090305
  87. Agrati C., Volpi I., Martini F., et al. Rapid and biologically safe procedures for the evaluation of antigen-specific T сell response to microbial pathogens that may be used in the BSL-3 and BSL-4 environment. Appl. Biosafety. 2008;13(1):27–30. DOI: https://doi.org/10.1177/153567600801300105
  88. Bоyum A. Isolation of mononuclear cells and granulocytes from human blood. Clin. Lab. Invest. Suppl. 1968;97:77–89.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Borisevich G.V., Ovchinnikov A.V., Kirillova S.L., Turavinina A.S.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).